
CHERIoT: Complete Memory Safety for Embedded Devices
Saar Amar∗

saaramar5@gmail.com
Microsoft

Tel Aviv, Israel

David Chisnall∗
David.Chisnall@cl.cam.ac.uk

Microsoft
Cambridge, UK

Tony Chen
tonychen@microsoft.com

Microsoft
Redmond, Washington, USA

Nathaniel Wesley Filardo∗
nwf20@cam.ac.uk

Microsoft
Cambridge, UK

Ben Laurie
benl@google.com

Google
London, UK

Kunyan Liu∗
kunyanliu@microsoft.com

Microsoft
San Diego, California, USA

Robert Norton∗
robert.norton@microsoft.com

Microsoft
Cambridge, UK

Simon W. Moore
Simon.Moore@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Yucong Tao
Yucong.Tao@microsoft.com

Microsoft
Mountain View, California, USA

Robert N. M. Watson
robert.watson@cl.cam.ac.uk
University of Cambridge

Cambridge, UK

Hongyan Xia†∗
Jerryxia32@gmail.com

Arm Ltd.
Cambridge, UK

ABSTRACT
The ubiquity of embedded devices is apparent. The desire for in-
creased functionality and connectivity drives ever larger software
stacks, with components from multiple vendors and entities. These
stacks should be replete with isolation and memory safety tech-
nologies, but existing solutions impinge upon development, unit
cost, power, scalability, and/or real-time constraints, limiting their
adoption and production-grade deployments. As memory safety
vulnerabilities mount, the situation is clearly not tenable and a new
approach is needed.

To slake this need, we present a novel adaptation of the CHERI
capability architecture, co-designed with a green-field, security-
centric RTOS. It is scaled for embedded systems, is capable of
fine-grained software compartmentalization, and provides affor-
dances for full inter-compartment memory safety. We highlight
central design decisions and offloads and summarize how our pro-
totype RTOS uses these to enable memory-safe, compartmentalized
applications. Unlike many state-of-the-art schemes, our solution
deterministically (not probabilistically) eliminates memory safety
vulnerabilities while maintaining source-level compatibility. We
characterize the power, performance, and area microarchitectural
impacts, run microbenchmarks of key facilities, and exhibit the

∗These authors made significant contributions to the design and implementation
without which the project would not have been possible.
†Work conducted while at Microsoft.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614266

practicality of an end-to-end IoT application. The implementation
shows that full memory safety for compartmentalized embedded
systems is achievable without violating resource constraints or real-
time guarantees, and that hardware assists need not be expensive,
intrusive, or power-hungry.

ACM Reference Format:
Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety
for Embedded Devices. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3613424.3614266

1 INTRODUCTION
The attack surface of embedded devices is no longer limited to
physical attacks, in an increasingly connected world. From con-
sumer electronics (smart watches, WiFi chips) to security-critical
devices (self-driving vehicles, aviation and smart grids) and more
recently IoT applications, physical isolation is rarely the boundary
in modern day embedded devices. With the increase of connectiv-
ity comes combinatorial growth of the attack surface. Sadly, the
resource constraints and the low-level programming environment
mean solving even the most basic problem of memory safety still
poses as a monumental challenge. Worse, the gap between the at-
tack surface area and the level of defense widens further when such
embedded devices are deployed into complicated multi-tasking sce-
narios with a Real-Time Operating System (RTOS) and multiple
software stacks from different vendors.

Even though researchers have disclosed an alarming number
of memory vulnerabilities in recent years [6, 11, 15], the lessons
learned from desktop and server systems do not directly translate
to embedded systems. Page table techniques, sanitizers, dynamic

https://orcid.org/0009-0006-2679-6504
https://orcid.org/0000-0001-6060-0153
https://orcid.org/0009-0008-9204-7047
https://orcid.org/0009-0002-9698-1503
https://orcid.org/0000-0002-3490-3473
https://orcid.org/0009-0007-2071-6750
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0009-0004-2055-8092
https://orcid.org/0000-0001-8139-8783
https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3613424.3614266

MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada Saar Amar et al.

instrumentation, higher-level languages and so forth all violate at
least one of the real-time, code size, power and compatibility re-
quirements. Instead, the industry has taken an incremental, largely
reactive, approach: architectural extensions are modest, narrowly
scoped, and heavily constrained by compatibility concerns. These
extensions often lack in scalability, generality and language-level
tooling, forcing developers back to manual software assertions and
code analysis tools, which show limited e�ectiveness.

Such an astounding security gap must be bridged before we push
for even more sophisticated networks among embedded devices. In
this paper, we start from the CHERI (Capability Hardware Enhanced
RISC Instructions) [27] Instruction Set Architecture (ISA) and in-
vestigate its applicability and limitations in resource-constrained
scenarios. To address shortcomings of prior attempted adaptations,
we co-design a new compartment isolation software model with
novel architectural extensions, capability encodings, and micro-
architectural accelerations. In tandem, these features, combined
with a trusted compartment switcher software routine and partially-
trusted memory allocator and scheduler compartments, guarantee
complete, deterministic inter-compartment memory safety. Such a
strong guarantee comes at a reasonable performance cost while not
sacri�cing C/C++ source-code level compatibility and real-timeness
of the system.

The contributions of this paper are:

(1) An embedded-systems architecture designed to support a
(co-designed) RTOS o�ering complete and deterministic com-
partmentalized memory safety.

(2) Architectural extensions and hardware acceleration for tem-
poral memory safety of cross-compartment references and
the RTOS's shared heap allocator.

(3) Performance evaluation of two embedded cores with di�er-
ent design tradeo�s.

(4) Evaluation of area, power and critical-path of hardware as-
sists for a production-quality core.

2 BACKGROUND
We quickly review compartmentalization, memory safety, CHERI,
and how the CHERIoT software stack uses these mechanisms before
discussing the novel aspects of our architecture. This whirlwind
tour is requisite, as CHERIoT is thoroughly co-designed, above
and below the traditional architectural boundary. Very few of its
interesting aspects stand alone; most act, at least somewhat, in con-
cert. We believe this is the only way to achieve e�cient robustness
against a strong threat model, instead of being a temporary setback
to attackers and/or useful only for debugging. An overview of the
RTOS is available [3] as is the full source code [1].

The core design principles for the CHERIoT platform are:

� Support theprinciple of least privilege, down to �ne-grained
permissions on individual objects (or �elds of those objects)
within the system.

� Support theprinciple of intentional use, down to ensuring
that individual memory accesses may happen only when
presenting a pointer that authorizes the speci�c operation.

� Provide abstractions that can be surfaced directly in C-like
languages, for example protecting objects, not pages, and

communicating via function calls between compartments,
not marshaled messages, at the lowest levels.

� Avoid requiring any structures in hardware that would in-
troduce nondeterministic latency, for example by requiring
caches for hot paths and having slow paths for cache misses
as with a conventional MMU and page-table walker.

� Avoid requiring any structures in hardware that would sig-
ni�cantly increase the area or power consumption to the
degree that it would signi�cantly impact cost or applicable
target domains, such as large associative lookups in an MPU
or TLB.

2.1 Real-time requirements
A real-time system is one in which the latency of operations is
bounded and can be reasoned about. For some applications, those
bounds must be very low. From a hardware perspective, the la-
tency of operations should not depend on the data being processed
andmustnot depend on other bits of system state. Cores aimed at
real-time applications cannot, for example, provide virtual memory
that requires traversing page tables on TLB miss because this intro-
duces nondeterminism in memory latency that can be impossible
to reason about. Similarly, such systems typically eschew caches.

The CHERIoT system is designed such that none of the hardware
operations have nondeterministic latency (though, as a microar-
chitectural optimization, some may have small variation in cycle
time). In addition, we provide extensions that allow software to
enforce which code may run with interrupts disabled, which makes
it tractable to reason about worst-case latency even in the presence
of components provided by mutually distrusting suppliers.

2.2 Software Compartmentalization
Compartmentalization refers to an engineering practice of par-
titioning a system with the aim of limiting the propagation of
damage or malfunction. For software, a compartment is, at least, a
collection of code and data, some of which is meant to be private.
Compartmentalization then often manifests as �mutual distrust�:
every compartment considers other compartments, and the sur-
rounding world more generally, to be potentially malicious. The
source of this potential malice takes many forms, which includes
the inevitability of bugs, untrusted software origins, low quality
pre-bundled drivers from toolkits, software supply chain attacks,
etc. Other compartments are assumed not just to contain possi-
ble bugs but also to actively attack, possibly collaboratively, other
compartments in any way possible.

In order for compartments to be useful, however, they must in-
teract with each other and/or the outside world, trustworthy or not.
Towards that end, compartments also declareexports: procedures
and/or (references to) data deliberately o�ered to the broader world.
The data within a compartment may includeimports: references to
exports from other compartments. Even for related compartments
(say, A importing B's export), it must be possible to limit the conse-
quences of such relations (continuing the example, A is not licensed
to any other part of B, even other exports, that it did not import).

A compartmentalized system will have universally trusted com-
ponents (the �Trusted Computing Base� or TCB) that enforce the

CHERIoT: Complete Memory Safety for Embedded Devices MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada

isolation of, and mediate the controlled sharing between, compart-
ments. These are high-value targets, able to jeopardize aspects of
correctness for any or all parts of the system, and, so, should be
minimized and carefully audited.1 In practice, the TCB is a com-
bination of (micro-)architecture, hardware o�oads, and software.
The (micro-)architecture provides omnipresent, local invariants:
things true on a per-instruction basis. Trusted software constructs
and enforces global invariants: properties impractical to check in
hardware. O�oads sit somewhere in the middle, making a series of
localized changes in the service of these global invariants. We shall
see that each aspect plays an important role in CHERIoT security.

Our CHERIoT RTOS o�ers a compartmentalization model of
code and data and a traditional multi-threaded time-sharing model
of execution. Its threads and compartments are orthogonal. At any
time, the processor is running one thread in one compartment and
has access to that compartment's code and data memory and that
thread's stack memory and register �le.Multitasking scheduling
facilitiesallow the core to change threads, andcross-compartment
procedure callsand returns cause it to change compartments.

Compartmentalization is a critical security technology because
it protects against unknown attacks by limiting the blast radius of
a compromise. Even formally veri�ed systems can contain security
vulnerabilities as a result of incomplete speci�cations or �aws in
the underlying axioms. Safe language code can have security bugs
from compiler bugs or the interactions with systems (such as most
forms of I/O) that are outside of the language's abstract machine.

Even with safe languages, components may come from mutually
distrusting sources or with di�erent regulatory requirements. For
example, a safety-critical component may need to guarantee that
no other software on the system can interfere with its operation.
At the same time, the network stack for connecting an IoT device
to a back-end service may need to protect TLS client keys and
similar from bugs in the rest of the system. In today's systems,
this compartmentalization is often achieved by providing multiple
microcontrollers, each with separate SRAM, which both adds to the
cost and limits �exibility: adding a new isolated concern requires
building a new device or weakening security.

2.3 Memory Safety
We de�ne memory safety relative to a compartmentalization model
built on mutual distrust. In this model, beyond static sharing by
export and import, objects may bedynamicallyshared between
mutually distrusting compartments merely by passing a pointer
as part of a cross-compartment call. A compartment may contain
code written in any language (including assembly, which does not
provide an object model), and so memory safety as enforced by the
RTOS and architecture is restricted to the cross-compartment case.
Each compartment must have the tools that it needs to guarantee
that no other compartment may violate its object abstractions. For
example, for any object owned by compartment A, compartment B
must not be able to:1 Access that object unless passed a pointer to
it. 2 Access outside the bounds of the object given a valid pointer to
that object. 3 Access the object (or the memory that was formerly

1�Trusted� in TCB should be read with resignation and aspiration, not as a pronounce-
ment of �tness for purpose. Merely moving code into a box labeled �TCB� does not
improve system security.

used for the object) after the object has been freed.4 Hold a pointer
to an object with automatic storage duration (`on-stack' object) after
the end of the call in which it was created.5 Hold a temporarily
delegated pointer beyond a single call.6 Modify an object passed
via immutable reference.7 Modify any object reachable from an
object that is passed as a deeply immutable reference.8 Tamper
with an object passed via opaque reference. Compartmentalized
memory safety is guaranteed regardless of whether the object (or
mere memory) is in static data, on the stack, or within the heap.

Additionally, compartments may use the same facilities to
achieve defense in depth against bugswithin themselves. For exam-
ple, all code in a compartment is permitted to access all of its globals
(simply by naming them) but our C/C++ compiler can enforce its
object model, even when pointers to globals are exposed to C/C++
code, and so protects against bounds errors even on private globals.

In our software stack, the heap allocator (Section 5.1) is a separate
compartment and all guarantees related to heap objects hold for all
code outside of said allocator. It is impossible to forge a pointer to
a heap object, use out-of-bounds accesses to jump from one heap
object to another, or use a heap object after it has been freed.

2.4 Capability Systems and CHERI
A capability is an unforgeable token, which, when presented, can
be taken as incontestable proof that the presenter is authorized to
have some speci�ed access to the object named in the token [23].
Capability systems de�ne an architectural protection model using
graphs of objects (including agents) and the capabilities they hold;
the model is largely dual to that of access control lists.2

A CHERI memory capability is a particular kind of architecturally
guarded fat pointer. Each capability is an integer memory address
augmented withboundsandpermissions(read, write, execute, etc.)
as well as an out-of-band validity tag bit to enforce its integrity
and unforgeability. A CHERI ISA then enforces that each memory
access is authorized via a valid capability in a register: the target
address must be within bounds and the operation must be permitted.
Avoiding an associative lookup, the speci�c register holding the
authorizing capability must be cited by the instruction stream, just
as most of today's ISAs cite integer addresses in registers.

Unlike architectural protection mechanisms like segmented
memory or Memory Management Unit (MMU) protection tables,
which rely on software-managedindirection tables, CHERI capabili-
ties are values that �ow through the system. The CHERI ISA o�ers
guarded manipulation instructions for capabilities, allowing the
construction of less-privileged capabilities from more-privileged
ones, but not the reverse. In summary: the bounds may be narrowed,
but neither widened nor displaced; permissions may be shed but
not regained; and tag bits may be cleared but never set.

2.5 Compartmentalization With CHERI
CHERI capabilities overtly address several concerns of compartmen-
talized memory safety:1 If software sets the bounds of a pointer

2Capability systems can be thought of as being �row-wise� representations of systems'
abstract access control matrix [16]. Their representations of authority � capabilities
� are located within the acting (subject) entities and serve to name the acted-upon
(object) entities. By contrast, systems built around access control lists (ACLs) are
�column-wise� representations, locating authority with the acted-upon entities with
ACL entries naming the acting entities.

MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada Saar Amar et al.

to an object, no subsequent action on that pointer will access any
adjacent object; similarly, removing write permission renders a
pointer permanently read-only. These actions areper-pointerand
allow software to enforce its (sub)object model's boundaries.2 Ab-
sent a capability to an object, software cannot access it, even if it
knows the address. In fact, for a CHERI program, the accessible
register �le de�nes the root set of capabilities. The program's total
authority is completely captured by this set and those that can be
(transitively) loaded through them. A program is free to reduce its
authority, by deriving suitably narrowed capabilities and erasing
the progenitors. Subsequent computation can then act arbitrarily
only on the selected subset of resources (to which capabilities exist).

CHERI also adds a�ordances for �non-monotonic transfers of
control�, allowing a program to restore (part of) its earlier authority
while atomically transferring control to a pre-arranged point in the
code.3 As is only sensible, these transfers are themselves managed
by capabilities. A capability to perform such a transfer is opaque, in
that its bearer may not load additional capabilities through it, and
exercising its authority implies relinquishing program control. More
generally, CHERI provides a `sealing' mechanism for constructing
opaque capabilities, which may later be `unsealed'; again, both
actions are authorized by capabilities [27].

Extending CHERI to address the more subtle points of com-
partmentalization, speci�cally those concerningdeepimmutability
and temporalnotions like object lifetime and delimited sharing,
constitutes the bulk of our e�ort. These extensions are the key
innovations of CHERIoT's capability system and enable its RTOS
to o�er its complete compartmentalized memory safety.

2.6 RTOS Implementation
Before �nally turning to our architecture in detail, it is worth brie�y
summarizing how our RTOS uses the architecture to make the
model concrete. CHERIoT's RTOS de�nes a compartment to be a
contiguous region of code and intra-compartment global data. Com-
partments' global data may include imports of other compartments'
designated exports. Compartments, possibly provided by multiple
and mutually-distrusting parties, are statically linked together into
a single system image; imports of exports are resolved at this time.

At run-time, threads begin within particular compartments (at
their designated entry points). While running within a compart-
ment, absent any intra-compartment special handling, the program
countercapabilitygrants access to all of the compartment's code.
Similarly, an ABI-reserved register, theglobals pointer, holds a ca-
pability granting access to all of the compartment's data. RTOS
primitives, totaling a little over 300 hand-written instructions, en-
force calling into and returning from compartment entry points,
as well as preemptive multitasking, with proper switching of com-
partment contexts.

CHERIoT also inherits from CHERI its 1-bit information �ow
control scheme, which classi�es capabilities as �global� or �local�.
Capabilities may transition from global to local, but not the reverse,
and storing a local capability requires that theauthority bear the
Store Local permission. The RTOS marks all stack pointers local and

3An imperfect analogy can be made to architectures with protection rings and banked
registers. Therein, a more-privileged ring may con�gure the architecture to create a
designated entry point for entry from less-privilege rings and may use its banked view
of registers to hold (pointers to) sensitive state inaccessible to the lesser ring(s).

Permission Applied to Permits
GL Global Load / Store value Storing cap. via non-SL cap.
LD Load data Load address Loads (inc. of caps if MC)
SD Store data Store address Stores (inc. of caps if MC)
MC Memory Cap. Load / store address Capability load / store
SL Store Local Store address Stores of non-global caps
LG Load Global Load address Loads of caps with GL LG
LM Load Mutable Load address Loads of caps with SD, LM
EX Execute Jump targets Instruction fetch
SR System Regs. Program Counter Access to special registers
SE Seal cseal authority Sealing with given otype
US Unseal cunseal authority Unsealing with given otype
U0 User perm. 0 - For software use

Table 1: Summary of capability permissions.

ensures that only stack pointers permit storing of local capabilities.
This prevents references to the stack from being captured in globals
or heap memory, which1 permits stack reuse across compartments,
and 2 enablesephemeral delegationof capabilities by marking them
local. (See Section 5.2.)

3 THE CHERIOT ARCHITECTURE
We now turn our attention to our new CHERIoT hardware platform.
It revises aspects of the CHERI architecture, improves upon the
earlier CHERI-64 capability encoding [29], and incorporates CPU
extensions that are foundational for full memory safety.

3.1 Novel features in CHERIoT
The most straightforward changes in CHERIoT are to architectural
aspects of CHERI, tailoring for our software model. We focus �rst
on modelchanges, leaving changes to capabilityrepresentationto
Section 3.2.

3.1.1 Tailored Capability Permissions.CHERIoT heavily revises
the ontology of permissions found within CHERI capabilities. These
changes are driven from two di�erent, con�icting needs: our soft-
ware model requires new expressiveness and yet we must minimize
the number of bits used within a capability. We begin byremoving
some unused expressiveness from existing CHERI architectures:

� We drop the unusedcinvoke instruction and permission.
� The separate load-capability and store-capability permis-

sions are combined into one bit, MC, which modi�es the ex-
isting load and store permissions to permit loads and stores
of capabilities. We did not �nd it useful to be able to have
di�erent access permissions for capabilities and data, other
than being able to permit data access but prohibit loads and
stores of capabilities.

� Capabilities may not simultaneously permit execution and
stores, guaranteeing W� X at the hardware level (though
retaining the ability for JITs to have separate writeable and
executable pointers to the same memory).

� We separate the permissions used for sealing from mem-
ory related permissions because their bounds and address
refer to a distinct namespaces (otypes rather than memory
addresses).

The last two points necessitate three di�erent capabilityrootsfor
writable memory, executable memory and sealing. On CPU reset, all
three roots are present in registers. Early-boot software is expected
to use these to build narrower capabilities around the system before
erasing the roots.

CHERIoT: Complete Memory Safety for Embedded Devices MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada

Our software model demands two new permissions:

� Recall from section 2.6 that the RTOS uses CHERI's local/-
global information �ow control to limit o�-stack storage of
capabilities. We extend this with a new permission, Load
Global (LG), that actsrecursively: capabilities loaded via a
capability without LG will have LG cleared and are marked
local. Thus, one can delegate a capability to the root of a com-
plex data structure and ensure that any capabilities thence
loaded can be held only in registers and on the stack. When
the callee returns, its stack will be cleared, ensuring that
these capabilities are not captured.

� Similarly, we have a Load Mutable (LM) permission that
permits read-only sharing by clearing LM and store permis-
sions on loaded capabilities. This feature is present in ARM
Morello but has not previously been featured in a CHERI
RISC-V architecture.

The full set of CHERIoT permissions is shown in table 1.

3.1.2 Sentries for Interrupt Control.In an embedded system, partic-
ularly one without atomic operations (optional in RISC-V), software
often needs to disable interrupts for short periods. In conventional
RISC-V, this is accomplished by setting or clearing an interrupt-
enabled bit in a control register. In a CHERI system, access to con-
trol and status registers (CSRs) is protected by the access-system-
registers permission (SR). This permission gives a large degree of
control and so we considered separating out the ability to toggle
interrupt status into a separate permission.

We realized that, for auditing, it is far more useful to know which
code runs with interrupts disabled than it is to know which code
may toggle interrupts. CHERI provides a mechanism for guarded
control �ow: sealed entry (�sentry�) capabilities. These are sealed
with a speci�c object type and are unsealed automatically when
used as a jump target, but are otherwise unusable. We extended this
mechanism to providethreesentry types: one enables interrupts,
one disables interrupts, and one makes no change to interrupt pos-
ture. On a jump-and-link instruction, the link register is written
with the sentry type that sets interrupt posture to its current value.4

This makes it easy to grant a compartment the right to call a par-
ticular function with interrupts disabled, without allowing it to
arbitrarily disable interrupts (thereby risking system availability).

3.2 CHERIoT capability encoding
Previous CHERI work for embedded devices [2, 29] (see Section 8)
directly apply the CHERI Concentrate [26] encoding scheme, from
64-bit systems, to 32-bit addresses, without exploring further opti-
mizations. Notably, the 11-bit permission �eld, with its orthogonal
bits, was retained. As a consequence of this and other ine�cient
uses of bits, the precision of bounds is signi�cantly reduced. The
T and B �elds can drop to as low as 3 bits, leading to an average
memory fragmentation of123 = 12”5%for padding and alignment,
unacceptable for memory-constrained systems. We now show how
CHERIoT addresses these ine�ciencies, arriving at an encoding
(�g. 1) that optimizes for the typical embedded programming model.

4Two more sentry `otype's are reserved for return-address sentries, one of each in-
terrupt posture. Later revisions of CHERIoT will distinguish forward and backward
control-�ow arcs.

0891718212224253031

R p'6 o'3 E'4 B'9 T'9

0'32

R reserved bit
p a 6-bit compressed permissions �eld
o a 3-bit `object type' (`otype') used to seal capabilities
E a 4-bit exponent used for the bounds encoding
B a 9-bit base used for the bounds encoding
T a 9-bit top used in the bounds encoding
a the 32-bit address of the capability

Figure 1: CHERIoT capability format

012345 Implied perms.
GL 1 1 SL LM LGmem-cap-rw LD, MC, SD

GL 1 0 1 LM LGmem-cap-ro LD, MC

GL 1 0 0 0 0mem-cap-wo SD, MC

GL 1 0 0 LD SDmem-no-cap None

GL 0 1 SR LM LGexecutable EX, LD, MC

GL 0 0 U0 SE USsealing None

Figure 2: Compressed permission formats

3.2.1 Permission encoding.Most signi�cantly, we introduceper-
missioncompression. As outlined above (Section 3.1.1), we have
identi�ed and removed combinations of permissions that are un-
wanted. We now exploit theinterdependenceof some permissions
to achieve a very compact encoding of our 12 architectural permis-
sions (Table 1) into 6 bits (Figure 2).

We encode the permissions in six di�erent `formats', with each
granting some number of permissions implicitly and encoding the
optional permissions that make sense given the implied permis-
sions. This encoding eliminates useless permission combinations.
For example, executable capabilities have the implicit permissions
required by the ABI for PC-relative addressing, and may option-
ally grant access to system registers. Capabilities may transition
between formats if the permissions are reduced during execution.

As a minor optimisation, we re-ordered thearchitecturalview of
permissions to place permissions that we anticipate will be most
commonly cleared (GL, LG, LM and SD) in the lowest bits. Masks
for clearing these may be constructed using a single compressed
RISC-V instruction.

3.2.2 Sealing and sentries.CHERIoT reduces the `otype' �eld, used
to seal a capability, to three bits.5 We observed in practice that

5While this may seem like a severe limitation, given our goal of �ne-grained com-
partmentalization, the RTOS is able to bootstrap avirtualized sealing mechanism
that, while not identical to CHERI's architectural seals, su�ces in all cases we have
encountered so far.

MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada Saar Amar et al.

0 = 0top = 0»31 :4 ¸ 9¼ 0mid = 0»4 ¸ 8 :4¼ 0»4 � 1 : 0¼

1 = 0top ¸ 2b B'9 0'e

C= 0top ¸ 2t T'9 0'e
0mid Ÿ B ? T Ÿ B ? 2b 2t

no no 0 0
no yes 0 1
yes no -1 -1
yes yes -1 0

Figure 3: CHERIoT bounds decoding.

software does not use the same type for both executable and data
capabilities. We enshrine this partition in the encoding, with two
disjointsets of 7 `otype' values (0 denotes unsealed), with the set
selected by the execute permission. Five of the executable otypes
are consumed by (or reserved for) sentries, leaving two for software
use. None of the data otypes has signi�cance to hardware; our RTOS
allocates four for core components, leaving 3 for other use.

3.2.3 Revised Bounds Encoding.We use a simpli�ed variant of
CHERI concentrate to encode the bounds as24-aligned values rela-
tive to the address for some exponent,4. Figure 3 shows how the
base,1, and top,C, are decoded by inserting B and T at bit4 into 0
and replacing the lower4 bits with zeros. The corrections2b and2t
account for the possibility of1 andCbeing in di�erent 24-aligned
regions from0. With this encoding, objects of up to511bytes can al-
ways be represented precisely, whereas larger objects require their
bounds aligned according to the value of4 necessary to accommo-
date their length. To allow the root capabilities to encompass the
entire address space an E value of0xf represents an exponent of 24;
other values map directly to their unsigned binary interpretation.

Compared to CHERI concentrate this encoding compromises
representable rangefor extraprecisionand reduced complexity. By
representable range we mean the range within which the address
can move while preserving the same decoded bounds. If the ad-
dress moves outside of this range the capability is invalidated. C
/ C++ programs may perform pointer arithmetic that takes the
address outside the object bounds, although strictly speaking this
is unde�ned behaviour except in the case of one byte past the
end. While the CHERI concentrate encoding goes to considerable
lengths to guarantee a minimum representable range beyond the
object bounds, the CHERIoT encoding has no such guarantee: in
the worst case the representable range is equal to the object bounds,
and in all cases addresses below the base are invalid. In the corpus
of embedded code that we have compiled so far (including some
comparatively large codebases, such as the TPM reference stack
and mBedTLS) we have not found this to be a problem. We con-
sider the reduced compatibility an acceptable compromise for the
increased precision and reduced complexity. We hypothesise that
embedded code is relatively careful about pointer semantics due to
being required to execute on more diverse architectures.

Finally, we implemented encoding and decoding in Sail [4] and
used its SMT solver backend to check some important properties of
the encoding scheme. For brevity, we do not elaborate further here.

All of these optimisations combined give our encoding a9-bit
precision in the T and B �elds. We consider this critical in reduc-
ing the average internal memory fragmentation to129 � 0”19%,
an acceptable cost. In fact, our encoding still has one unused bit
available, which could be used for expansion of precision, otypes
or new permissions.

3.3 Temporal safety acceleration
The existing CHERI ISA itself does not provide any mechanism for
temporal safety. However, prior work [25, 28, 31] has revealed an
important insight: that pointer unforgeability and monotonicity
o�er a foundation for e�cient enforcement of temporal safety by
means of pointer revocation. The deterministic spatial safety from
CHERI hardware enables temporal safety schemes that are also de-
terministic, that is, references to recycled memory are guaranteed to
have been removed prior to reuse. On conventional architectures, in
contrast, there is no distinction between pointers and integers and
so no guarantee that pointers are derived monotonically. Therefore,
temporal safety operating using only conventional architectural
mechanisms is probabilistic at best, and the probability can be
reduced dramatically by targeted attacks.

Previous CHERI-based temporal safety work has been approach-
ing acceptable performance with reasonable overheads, but uses
mechanisms unavailable to embedded systems. Primarily, they im-
plement load and/or store barriers with the MMU, taking advantage
of already-incurred overheads and variable latencies within the sys-
tem. For performance, enforcement of temporal safety isbatched,
with memory `quarantined' until enforcement �nishes; quaran-
tined memory remains accessible to software. This necessitates a
weaker security model, di�erentiating between UAF accesses to
quarantined memory and �use after reallocation� accesses to reused
memory; only the latter can be guaranteed to be prohibited. Instead,
our CPU pipeline o�ers hardware-assisted temporal memory safety
with a stronger security model and without need of an MMU.

3.3.1 Heap revocation bits.As with prior work, we introduce `re-
vocation' bits to heap allocation granules. Each granule has a corre-
sponding revocation bit, indicating whether this granule belongs to
a memory chunk that has been freed and so should not be accessed.
We pick 8 bytes as an allocation granule due to capability alignment;
this adds SRAM overhead of18� 8 = 1”56%for eachheapmemory
granule. A larger granule size, for a smaller revocation bitmap, is
possible, at the cost of some allocations requiring more padding.

We emphasize that this overhead applies only to heap memory.
While the simplest approach would be to associate all SRAM with
revocation bits, other designs are possible. To name a few design
points, the SoC architecture may statically associate only some
SRAM with revocation bits, may o�er a �xed amount of revocation
SRAM to be con�gurably associated with primary SRAM, or may
be able to con�gurably partition a single SRAM bank into data and
revocation regions. Software can ensure that the heap occupies
only regions associated with revocation bits and can prefer to place
irrevocable resources � code, global data, and thread stacks � in
regions without. Thus, the actual SRAM overheads can be much
smaller, since heap is only a fraction of the total memory usage of
embedded systems, all the way down to none at all if memory is
strictly statically allocated.

CHERIoT: Complete Memory Safety for Embedded Devices MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada

Fetch Decode Execute Memory Writeback

Main
SRAM

Revocation
SRAM

Background
load

Background
base check

Figure 4: Hardware load �lter in a 5-stage pipeline. Arrows indicate pipeline
�ow whereas dotted arrows indicate SRAM requests and responses.

The revocation bit area is memory-mapped and the RTOS build
system and loader ensure that only the heap allocator compartment
has access to this region. Upon afree() call, the allocator sets the
corresponding revocation bits then zeros the freed memory. As with
prior work, freed memory is quarantined until the allocator knows
there are no outstanding references, at which time the revocation
bits are reset and the memory is available for reuse. Unlike prior
work, our processor pipeline directly consults these revocation bits!

3.3.2 Hardware load filter.We implement a hardware load �lter for
all capability load instructions. Upon everyclc $cd, offset($cs) , the base
of the capabilityto be moved into$cd is computed and the associated
revocation bit is looked up. If the revocation bit is set, this capability
points to freed memory and must be invalidated (by clearing at least
the tag) before register writeback. This mechanism assumesspatial
safety: because the allocator has bounded its returned pointer to a
particular object, all derived, usable references to that object will
have bases within that object.6

We exploit the fact that embedded memory is commonly tightly
coupled with the CPU, so the revocation bit lookup can be intro-
duced with minimal cycle latency. If an additional read port is
dedicated to the revocation bit lookup, the load �lter can be im-
plemented without any pipeline stalls in a classic 5-stage pipeline,
shown in Figure 4. Here, the capability load instruction initiates a
memory read operation in EXE, and gets the response in MEM. The
MEM stage computes the base of the loaded capability and initiates
a revocation bit read, and gets the revocation bit in WR. WR then
strips the tag right before register writeback if the bit is set. The
load �lter �ts in the 5-stage pipeline nicely, as the MEM stage of
a CHERI CPU already contains full bounds check logic for certain
instructions and �nding the base would not be on the critical path.

The load �lter is a powerful addition that maintains a crucial
invariant: no capabilities that point to freed memory can be loaded
into registers. Interestingly, this invariant brings a much simpli-
�ed version of capability revocation than existing CHERI temporal
safety work: sweeping memory to invalidate stale capabilities (ca-
pabilities pointing to freed memory with revocation bits set) can
be achieved by a simple loop, which loads each capability word
and stores it back. Because most embedded CPU pipelines have at

6More precisely, the use of this mechanism to achieve temporal safety relies on the
architectural features of capability tags (to precisely identify pointers) and on mono-
tonicity of capability bounds, as well as on correctness of the bounds set by the allocator
software.

least one cycle of load-to-use delay, this loop is unrolled to load
two capabilities, avoiding the pipeline bubbles of a straightforward
single load and store; complex pipelines may bene�t from further
loop unrolling. At the end of the loop, all heap memory chunks
freed prior to the start of the loop have no stale references to them
and can be safely reused.

As the load �lter applies to all capability loads in the system,
this loop's body must be atomic but the loop may be interrupted
or preempted after any iteration. In practice, our software revoker
disables interrupts to incrementally sweep parts of memory with a
presumably reasonable, and easily changed, batch size. We exploit
this preemptable nature of the revoker to allow the allocator to
continue servicing requests even while revocation is in progress.
Moreover, the RTOS may continue (or begin) a revocation sweep
even while the allocator is idle, which may be useful actions if
the system has otherwise idled. Towards these ends, the revoker
publishes anepochcounter, incremented once before starting its
sweep of memory and once again upon completion of the sweep.
This epoch is crucial for the memory allocator to know whether a
revocation pass is underway or �nished, as we discuss in Section 5.1.

3.3.3 Background pipelined revoker.The load �lter alone is able to
signi�cantly simplify sweeping revocation and to make temporal
safety possible, with sweeping revocation implemented in software.
However, a software implementation consumes CPU cycles in appli-
cation threads or a dedicated thread. Also, software sweeping must
�nish before freed memory chunks from the allocator can be re-
turned to free-lists, potentially causing high latency for applications
using the heap.

We observe the fact that embedded applications typically spend
less than 50% of the CPU performing memory reads and writes, i.e.,
more than half of the cycles are register-register operations. We
implement a �background� engine (�g. 4) which engages the load-
store unit whenever the main pipeline is not performing memory
operations. The background revoker is a simple state machine, ad-
vancing through memory loading and storing each capability word,
invalidating capabilities via the load �lter. However, a naïve single-
stage implementation fails to take full advantage of the memory
unit, as the load �lter has a one-cycle delay (issue capability word
load request, extract base �eld from the capability word response
and issue the revocation bit request, obtain the revocation bit re-
sponse and then invalidate the capability) to decide whether the
capability word should be invalidated. We pipeline the background
revocation engine by introducing a second stage; the one-cycle
delay is �lled by another capability load request, meaning there can
be two capability words in �ight, achieving maximum throughput.

The background revoker is exposed as an MMIO device with
4 registers:start , end, epoch, andkick : start andendregisters
specify the region that revoker should sweep.epochis a read-only
register directly analogous to the epoch exposed by the software
revoker.kick register is write-only and writes simply start a revo-
cation pass within»start •endº with no e�ect if a revocation pass
is already underway.

Race condition with the main pipeline.Notice that the background
revocation engine runs right beside application threads and may
introduce data races. Consider the following scenario:1 the back-
ground revoker loads the word at address A,2 an application thread

MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada Saar Amar et al.

writes to A, 3 load �lter indicates the capability word points to
freed memory, and4 revoker writes the invalidated word to A.
This causes the new word written by the application thread to be
overwritten by the revoker, causing logic errors.

To deal with this, store requests from the main pipeline must be
made visible to the background revoker as well. The address of the
store from the main pipeline must be checked against the addresses
of the two capability words in �ight in the revoker. If equal, the
revoker must reload the word. Note that this is not a problem for a
software revoker, where this race condition is avoided by disabling
interrupts, so that the load and store will not be interrupted by an
application write to the same address. The ability to put mutually
distrusting workloads on a single core is one of the bene�ts of our
design but in cases where microcontrollers use multiple cores for
performance isolation then the revoker would need to snoop on all
memory tra�c from either core.

4 IMPLEMENTATIONS
We have built two implementations of the CHERIoT ISA to date.
The �rst is a prototype core based on the BlueSpec Flute core [8],
which had already been extended to support CHERI. Flute is a
�ve-stage single-issue in-order pipeline and is written in BlueSpec
SystemVerilog. It has a 65-bit (64-bit plus tag) memory bus and a
fairly long pipeline by embedded standards. Our second core, the
CHERIoT-Ibex, is based on the Ibex core [21], now maintained as
part of the OpenTitan project. CHERIoT-Ibex is a small 32-bit core
suitable for embedded applications and our version is primarily op-
timized for area. As with the original Ibex design, it is con�gurable
as either 2-stage or 3-stage in-order pipeline implementation. The
CHERIoT-Ibex core's data memory bus is only 33 bits wide. The tag
bit is stored in both halves of a capability and, on load, these bits are
AND-ed together to give the architectural tag bit. This allows 32-bit
data writes to clear the tag bit for the entire capability, without
needing to widen the data bus.7 Other than the data width, the
memory interfaces are identical to the original Ibex design.

We select Ibex and Flute to investigate two interesting points
in the design space. On one end, Ibex implements a minimal em-
bedded CPU that targets a small silicon area. On the other end,
Flute represents a larger CPU that brings higher performance at
the cost of higher transistor count. The two CPUs enable us to
demonstrate CHERIoT implementation trade-o�s under di�erent
design requirements and restrictions.

5 MEMORY ALLOCATOR AND
COMPARTMENT ISOLATION

Equipped with the hardware assists, the OS and the allocator are
now able to enforce full memory safety.

5.1 Heap allocator
We build the heap allocator on top ofdlmalloc . Boundary tagging
and in-band metadata are preferred on embedded devices over
size-class or buddy allocators due to memory constraints, and the
lack of performance requirements for caches, paged memory or
multi-threading throughput. Spatial safety is guaranteed by setting

7A similar design is used by IBM's System/38 and later architectures [18, ch. 8].

bounds onmalloc() , excluding the header (which may require small
amounts of padding).

We augmentdlmalloc with separate quarantine lists for temporal
safety. Instead of returning memory to the free lists right afterfree() ,
returned memory chunks are attached to the quarantine list of the
current epoch. If the epoch has advanced since the last call tofree() ,
the allocator opens a new list. The allocator need track at most only
3 distinct quarantine lists (with di�erent epochs). If a quarantine
list has an age of 3 or more (meaning current epoch is at least three
greater than the epoch when the list was opened), then chunks on
that list must have gone through a revocation sweep.

When enough freed memory has accumulated in quarantine or
the system is low on heap memory, the allocator will start the a
revocation pass (either using the software revocation loop or by
starting the background revocation engine), invalidating all stale
capabilities. Since memory chunks are pulled out of a quarantine
list and pushed back to free lists for reuse only after a full revocation
cycle, it is impossible for allocations to temporally alias, since all
stale copies must have been invalidated before a memory chunk is
issued tomalloc() again. Because quarantine is exposed to the archi-
tecture and understood by the load �lter, we can make the stronger
assertion that UAF accesses in general are impossible as soon as
free() has returned.

5.2 Local-global and stack clearing
Although a heap allocator with spatial and temporal safety provides
a generic mechanism, certain function call patterns require passing
an object with temporary and scoped lifetime. For example, a caller
may invoke a callee and pass on-stack arguments. It is a security risk
to allow the callee to hold onto a capability to the caller's stack after
the call. A safe allocator can solve the problem by allocating a bu�er
from the heap and passing the callee a heap bu�er. This would add
the overhead of amalloc() and afree() call for every invocation, and
increase the frequency of sweeping revocation.

The CHERI ISA provides a crucial mechanism for scoped dele-
gation of objects: the Global (G) and Store-Local (SL) permissions.
Capabilities without the G permission are called local capabilities,
and can only be stored to memory via a capability that has SL. The
details of the RTOS design would not �t in this paper and so we pro-
vide only a summary here; a detailed overview and the source code
are available [1, 3]. Scoped delegation can be achieved as follows:
The bootloader �rst creates compartments, each of which is de�ned
by a pair of code and global data capabilities. The global pointer of a
compartment has its SL permission cleared. On cross-compartment
calls, the caller strips the G permission from all objects that it wants
to temporarily delegate. The switcher provides the callee with a
program stack (by chopping o� part of the caller's stack, setting
the CHERI bounds in the stack pointer register) that has SL. Note
that this stack is the only storage that can store local capabilities,
since the code capability is read-only and the global data capability
has no SL, therefore arguments from the caller without G cannot
be stored outside the stack. When the callee �nishes and returns
to the caller, the provided stack is zeroed by the kernel, both to
avoid leaking secrets and to ensure the references to temporarily
delegated objects are destroyed. On return, the caller is con�dent
that the callee no longer has access to those objects.

CHERIoT: Complete Memory Safety for Embedded Devices MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada

Scoped delegation exploits the fact that the stack usage of em-
bedded applications is usually limited to a couple of KiBs. The cost
of zeroing the stack is bounded by the stack size.

5.2.1 Stack high water mark.When benchmarking the RTOS we
observed that the stack clearing necessary on cross compartment
calls could have considerable overhead. This is because the com-
partment switcher does not know how much of the stack has been
used prior to the call and so must zero the entire unused portion
of the stack before passing it to the callee, and again on return.
We therefore devised a simple hardware mechanism that enables
the switcher to clear the minimum amount of stack. This consists
of two new CSRs protected by the SR permission and accessible
only to the switcher: the stack base register and the stackhigh
water mark. When starting a thread the switcher sets the stack base
register to the lower limit of the thread's allocated stack and the
high water mark to its top. On every store the hardware updates the
stack high water mark if the store's address is greater than or equal
to the stack base and less than the current high water mark. In this
way the high water mark tracks the lowest stack address stored to
by the current thread and hence the maximum stack usage (note:
stacks grow downwards in the RISC-V ABI). On compartment calls
and returns the switcher only needs to clear the part of the stack
between the high water mark and the current stack pointer and can
then reset the high water mark to the current stack pointer. The
values of the stack base and high water mark CSRs must be saved
and restored on every thread context switch.

This has a low cost in hardware and means stack is never cleared
unnecessarily. The amount of stack cleared on entry to a cross
compartment call is the di�erence between the maximum stack
usage prior to the call and the stack use at the time of the call (often
zero). On return it is exactly that amount of stack used by the callee.

5.3 Unforgeability and monotonicity
The description of the allocator and the stack clearing demonstrates
how a deterministic temporal safety scheme must depend on deter-
ministic spatial safety, which, in turn, relies on referential safety,
or unforgeability of references. In both the heap and the scoped
delegation cases, we guarantee temporal safety on the foundation
that a pointer is unforgeable and can only decrease rights. After
painting the revocation bits of a memory chunk onfree() , it is im-
possible for a stale pointer to escape revocation because CHERI
instructions can only increase the base, decrease the top or remove
permissions. As a result, a pointer pointing to freed memory must
have a base �eld pointing to revocation bits that have been set, and
there is no way for it to escape the revoker.

6 SUMMARY: FULL MEMORY SAFETY
Prior security analysis of CHERI (as used by conventional UNIX-like
operating systems) identi�ed limitations in temporal safety [13].
Existing temporal safety work on CHERI, such as Cornucopia [25],
does not meet the requirements of low-latency and determinism
in embedded systems. Therefore, we explore architectural assists
and hardware accelerations to bridge the gap between the ISA
and full memory safety (especially temporal safety) in Section 3.
First, the hardware load �lter ensures it is now possible to enforce

Ibex 300MHz
Gates Power(mW)

RV32E 26988 1.437
RV32E + PMP16 55905 (2”07�) 2.16 (1”50�)

RV32E + capabilities 58110 (2”15�) 2.58 (1”79�)
+ load �lter 58431 (2”17�) 2.58 (1”80�)

+ background revoker 61422 (2”28�) 2.73 (1”90�)
Table 2: Area and power costs for variants of Ibex.

temporal safety without stopping the world and without the non-
determinism of an MMU. The background revoker then further
accelerates sweeping revocation by taking advantage of spare cy-
cles in the load-store unit, greatly reducing the overhead from a
software revoker. We show that such hardware assists need not be
intrusive and can �t in the classic 5-stage in-order pipeline nicely.
We then describe the necessary allocator and cross-compartment
call changes that, together with the hardware assists, enforce com-
plete memory safety.

Unlike prior work, we give a strict and simple de�nition of com-
plete memory safety. We neither exclude any particular attack sur-
face as a limitation of our work, nor rely on probabilistic approaches
that can be circumvented. We believe this is the �rst embedded sys-
tem that enforces deterministic spatial and temporal memory safety
across compartment boundaries. This is achieved at the ISA and
CPU level with a minimum TCB, in contrast to other approaches
that require new languages and complete rewrites of the code.

7 EVALUATION
7.1 Area, timing and power analysis
To understand area and power costs of CHERIoT, we have imple-
mented several variants of our CHERIoT-Ibex core using TSMC's
28nm HPC+ process [20]. The Ibex variant is the version targeting
production use, similar measurements on Flute are not informative
because the minimal changes for the prototype left a number of
large features (such as supervisor and user modes) that a CHERIoT
core does not require. All Ibex con�gurations had a� max of 330
MHz. For each, we counted gate equivalents and estimated power
draw when running Coremark; results are summarized in table 2.

Broadly speaking, we see that CHERIoT and a 16-way standard
RISC-V Physical Memory Protection (PMP) unit, more than double
the gates required for Ibex, which is optimized to be small. CHERIoT
with its load �lter requires an additional 4.5% gate overhead relative
to the PMP; adding the optimized background revoker takes the
area overhead relative to the 16-element PMP baseline up to a little
under 10%. Given the very small baseline, this di�erence is unlikely
to be the deciding factor between a CHERIoT- or PMP-enabled core.
Even at 61KGE, the core area is likely to be well under 10% of the
area of a cheap IoT SoC. Where area is very tightly constrained
but performance is less important, the hardware revoker can be
replaced with a software version.

Pre-silicon power evaluation is based on modeling that has a
potentially large margin of error and these values should be re-
garded as preliminary estimates. We believe that much, though not
all, of the reported increase in estimated power for variants with
CHERIoT is an artifact of the model's over-reliance ongate count.
In particular, the comparators in the PMP must all be engaged on
every load or store, whereas the CHERI version has no equivalent

MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada Saar Amar et al.

Con�guration Flute Ibex
Score Overhead Score Overhead

RV32E 2.017 - 2.086 -
+ Capabilities 1.892 5.73% 1.811 13.18%

+ Load �lter 1.892 5.73% 1.624 21.28%
Table 3: CoreMark results for our two cores

structures. The hardware background revoker is idle and consumes
little power when not in allocation-heavy phases of computation.
These preliminary data then suggest that CHERIoT and PMP con-
�gurations are likely to have similar power requirements, with
CHERIoT perhaps a little higher.

7.2 Performance evaluation
We compile the benchmark using the CHERIoT version of the Clang
compiler, which is currently based on Clang 13.0, with-Oz. This �ag
tells the compiler to optimize for code size, even at the expense of
performance and to optimize for performance only where doing so
is not expected to impact code size. We choose this option because it
is the default for our embedded use cases, where reduced instruction
memory has a signi�cant impact on device cost.

The compiler has two known bugs that we did not have time
to �x before submission that cause a non-negligible impact on
performance and code size, and so these numbers should treated as
worst-case.1 The LLVM back end associates arithmetic and folds
constants for a large number of address-computation idioms. This
does not currently work if the base address is a CHERI capability.
This particularly impacts loops that iterate over arrays of structures.
2 The LLVM back end currently applies bounds to accesses to
globals, even in cases where it can statically prove that the accesses
are in bounds. This particularly impacts any phases that access
globals. Both of these bugs can be �xed using known techniques
and we expect them to be addressed before any CHERIoT silicon is
in production.

7.2.1 CoreMark.To evaluate the performance impact of the vari-
ous features, we �rst turn to the CoreMark benchmark suite. This
suite is intended to measure the core features of a processor. The
CoreMark suite runs bare metal and does not depend on our RTOS.
The results (CoreMark per MHz) are shown in table 3.

The results show a baseline of the benchmark compiled for
RV32E (32-bit address space, 16 registers). The next result is from
enabling the CHERI extension, which means that the compiler will
use 64-bit capabilities instead of 32-bit integers to represent point-
ers. This result has the load �lter disabled in the cores. The �nal
result shows the overhead of then enabling the load �lter.

In both cases enabling capabilities adds some overhead. We be-
lieve that much of the overhead on Flute is due to the compiler
bugs mentioned earlier, but some is unavoidable. In particular, the
compiler must set bounds on stack allocations or address-taken
globals. On Ibex, there is additional overhead from the fact that
loading or storing a pointer now requires two bus accesses due to
the narrower memory bus.

The impact of the load �lter is most interesting. On Flute, this
is entirely hidden within the existing pipeline structure. Ibex has

Figure 5: Allocator benchmark results on Flute

Figure 6: Allocator benchmark results on Ibex

a shorter pipeline and the extra load-to-use penalty for loads of
pointers is noticeable.

This demonstrates that CHERIoT can be implemented with low
performance overhead relative to a RISC-V baseline, when added
to a performance-focused embedded core.

7.2.2 Allocation microbenchmark.Having demonstrated the costs
of spatial memory safety, we now explore the tradeo� space sur-
rounding the heap. For this evaluation, we have a microbenchmark
that allocates and frees a total of 1MiB of memory. We run this
benchmark with allocation sizes ranging from 32 bytes to 128 KiB.
We run this benchmark in four di�erent con�gurations: 1 With
no temporal safety in use at all (Baseline),8 2 with the revoca-
tion bits updated, but no sweeping revocation (Metadata), 3 with
revocation performed in software (Software), 4 with revocation
o�oaded to the hardware (Hardware). For each revoker imple-
mentation, we also show the results with the stack high water mark
((S)) enabled. Raw results are shown in table 4, and �g. 5 and �g. 6
depict overheads relative to the baseline con�guration.

The relative cost of scanning all memory for revocation in soft-
ware initially increases as the allocation size increases, accounting
for more than half of the total run time by the time we reach 1KiB

8The baseline has no revocation bitmap. Ordinarily, our allocator uses that to detect
frees of partial objects, and so the baseline is vulnerable to heap corruption if an
attacker frees a pointer to the middle of an allocation. One can build allocators that are
robust against this kind of attack without our revocation bitmap, but doing so would
incur more memory overhead than the 8 bytes per allocation of our implementation.

CHERIoT: Complete Memory Safety for Embedded Devices MICRO '23, October 28�November 01, 2023, Toronto, ON, Canada

Table 4: The number of cycles taken to allocate 1 MiB of heap memory at di�erent sizes.

allocations. This is because each doubling of the allocation size
halves the number of cross-compartment calls to the allocator and
so the baseline costs reduce. This happens slightly earlier for Ibex
(around 512B allocations) because of the narrower memory bus.

For very large sizes, the cost of revocation dominates the total
time. With 128KiB allocations, we must perform a complete revoca-
tion sweep for every allocation. The cost of scanning almost 256KiB
of SRAM is considerably more than the cost of the allocation, but
is more e�cient if performed by the hardware revoker.

For small sizes, the cost of cross-compartment calls dominates.
The stack high water mark, as described in section 5.2.1, signi�-
cantly reduces this overhead. For small allocations, this reduces
the total cost by 10%, though this bene�t decreases as the cross-
compartment call cost becomes a smaller part of the total. On Ibex,
where the narrower bus makes the cost of zeroing proportionately
higher, this brings the cost of spatial and temporal safety, even
with revocation performed in software, below the baseline (spatial
safety only) for 32- and 64-byte allocations. The combination of
both the hardware revoker and the stack high water mark gives
better performance than the baseline for allocation sizes up to 512B
on Flute (the vast majority of allocations on embedded systems) and
close to the baseline on Ibex. This is because the cost of revocation
with the hardware revoker is so small that the speedup from the
water mark dominates.

Performing revocation in software has a higher overhead (though
this would be a lower percentage of the total if the memory is
used for anything) and is acceptable for a number of embedded
workloads. We believe the overhead from temporal safety with
the hardware o�oad will be su�ciently low to encourage more
heap use and reduce the SRAM required for static carve outs in
embedded development.

The software revoker performs one load and one store per
capability-sized memory location. On Ibex, this becomes four ac-
cesses to the main SRAM in total. The hardware revoker does not
write back memory unless the tag bit was cleared by the load. The
fact that the architectural tag bit is the result of AND-ing together
the two microarchitectural tag bits makes two optimizations possi-
ble. First, the revoker can perform a single write to invalidate the
capability. Second, the revoker can skip the second load if the tag bit
is zero in the �rst half of a capability. We currently implement the
�rst, but not the second, of these optimizations. Ibex is optimized

for area and so the current implementation reuses the load checks
in the load-capability logic of the main core.

For Flute, the performance of the hardware revoker appears to
get worse in the later benchmarks. Flute is the prototype core and
so does not have all of the quality-of-implementation features of the
production version. In particular, the Flute revoker does not raise
an interrupt on completion and so requires software to periodically
poll. As the RTOS wakes up the blocking thread to recheck, it
performs a �urry of memory accesses, which take precedence over
the revoker's access and slow it down.

Somewhat surprisingly, the �nal case (allocations that are large
enough to trigger a revocation each sweep time) becomes slower
on Ibex with the stack high-water mark in addition to the revoker.
This benchmark variant spends most of its time waiting for the
revoker to complete and so the extra two registers that must be
saved and restored on thread context switching is visible.

7.2.3 End-to-end performance.To evaluate the end-to-end perfor-
mance of our system, we assembled an example IoT application.
This uses a compartmentalized network stack with the FreeRTOS
TCP/IP stack, mBedTLS, and the FreeRTOS MQTT library, each
in a separate compartment. These connect to the Azure IoT Hub
and fetch some JavaScript bytecode, which is then run using the
Microvium JavaScript interpreter (in a separate compartment). Ev-
ery network packet that is sent and received is a separate heap
allocation, protected by temporal safety, as are the chunks of mem-
ory that make up the JavaScript heap. Microvium does not reuse
memory between garbage collection passes and so our temporal
safety guarantees also hold for JavaScript objects accessed from C
code. The JavaScript is invoked every 10ms to animate the LEDs on
the FPGA dev board, which is running the CHERIoT Ibex at 20MHz.
The CPU load, averaged over a minute of the benchmark run (so
including the time taken to establish the TLS connection) is 17.5%
(i.e. 82.5% of the total CPU time is allocated to the idle thread). We
believe that this demonstrates that even an area-optimized core at
a low clock speed can meet the requirements of a large number
of embedded use cases, without the need to rewrite the source
code (the majority of this example is running existing open-source
embedded components).

	Abstract
	1 Introduction
	2 Background
	2.1 Real-time requirements
	2.2 Software Compartmentalization
	2.3 Memory Safety
	2.4 Capability Systems and CHERI
	2.5 Compartmentalization With CHERI
	2.6 RTOS Implementation

	3 The CHERIoT architecture
	3.1 Novel features in CHERIoT
	3.2 CHERIoT capability encoding
	3.3 Temporal safety acceleration

	4 Implementations
	5 Memory allocator and compartment isolation
	5.1 Heap allocator
	5.2 Local-global and stack clearing
	5.3 Unforgeability and monotonicity

	6 Summary: full memory safety
	7 Evaluation
	7.1 Area, timing and power analysis
	7.2 Performance evaluation

	8 Related work
	Acknowledgments
	9 Conclusion
	References

