
SCI Semi is supporting ongoing
development of the CHERIoT

software stack and aims for first
CHERIoT silicon in 2024

CHERIoT began as a Microsoft research
project and Microsoft plans to continue to

develop the CHERIoT Ibex core by
investing internal resources and is
considering the prospect of using

CHERIoT Ibex for Microsoft products.

Becoming real

CHERIoT: Complete Memory
Safety for Embedded Devices

CHERI provides a foundation

Adding temporal safety

Compressing permissions

Building compartments

Accelerating compartment transition

void *a;

Reserved bit
Space for future

expansion

Permissions.
Every pointer can have a

restricted set of permissions

Object type.
Pointers can be used as (tamper-proof)

call gates or opaque types.

V
R P’6 O’3 E’4 T’9 B’9

A’32

Compressed bounds.
Pointers cannot access out of bounds

Address.
Pointers can refer to any address and be used in arithmetic

Non-addressable valid
(‘tag’) bit.

Pointers cannot be
created from thin air.

Google is evaluating CHERIoT and
investing in formal verification for the

software stack

Load a pointer-sized
value

Make value available in
register

Decode base

Load the corresponding
revocation bit

Clear the tag bit

Is the bit set?

No

Yes

Is the tag bit set?

No

Yes

Is the base in the
heap SRAM region?

No

Yes

Every 8 bytes of SRAM
that can be used as

heap correspond to one
bit in a separate

revocation SRAM bank

No way to load a dangling
pointer and so no way to
increase the number of

dangling pointers in
memory

Sweeping revocation uses
unused cycles in the load/
store pipeline to invalidate

dangling pointers in memory.

Running code can access any
memory transitively reachable
from the pointers in registers

GL LD SD MC SL LG LM EX SR SE US U0

May be stored
anywhere

May be used to
load data

May be used to
store data

May load/store
pointers if it may

load/store

May be used to
store pointers
that lack GL

May be used to
load pointers
that have GL

May be used to
store pointers
that have SD

May be used as
a jump target
and executed

When executing,
may access

system registers

May be
used to seal

May be used to
unseal

Software use
Architectural
permissions

GL 1 1 SL LM LG

GL 0 1 SR LM LG

GL 0 0 U0 SE US

Read/write root

Read/execute root

Sealing root

(implicit LD, MC, SD)

(implicit EX, LD, MC)

GL 1 0 1 LM LG

(implicit LD, MC)

GL 1 0 0 0 0

(implicit MC, SD)

GL 1 0 0 LD SD

PC

GP

SP

A0

T0

Current
compartment’s

code

Current
compartment’s

globals

Current
thread’s

stack

Registers

Heap objects

Current
compartment

can access only
part of the

stack

Current
thread’s

stack

Delegated portion of the stack is zeroed
on cross-compartment call and return

Hardware tracks stores to
the stack and updates a

high-water mark register so
only the used portion of the

stack is zeroed.

Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben Laurie, Kunyan Liu, Robert
Norton, Simon W. Moore, Yucong Tao, Robert N. M. Watson, Hongyan Xia

Read-only

Write-only

Data-only

