Workshop

Ben Laurie, David Chisnall

Reducing blast
radius

* What breaks if this crashes?

* What breaks if this is
compromised?

* What is leaked in either case?

Trust models for compartments

Sandbox

Things outside
are protected

Mutual Distrust Safebox

Protection in Things inside
both directions are protected

The principle of least privilege

No compartment has rights that it doesn’t need

Library-based compartmentalisation

* Each dynamic library is a compartment

* Dynamic linker sets up trampolines between cross-compartment calls
* Clean up unused registers
e Switch the execution stack

* Etc.
Register File ¢ - - - - - - - -a----- - - - - 1 Register File
i Updates i
~— viaPLT — -
Caller | | Trampoline | | Callee

AN

, Generates, Updates
[] Library A L [1 TCB

O] Library B Dynamic Linker

Demo: Protecting against stack corruption

A pure computation function is supplied by some untrusted third-
party library.

1nt pure computation();

This function is supposed to have no side effects, but how do we
guarantee that?

The concrete implementation of C implicitly confers many more
powerful capabilities to the untrusted function. For example, it could
overwrite the stack frame of its caller...

" Terminal Shell Edit View Window Help

O ® B & ™ ® 3 @ Brsc 9% @m

-
o

Q & Wed8Nov 13:44

[#include <stdio.h>
[#include <string.h>

[

#define MSG "Hello, world!"

[void f();

int main() {
[char bufl[14];

memcpy (buf, MSG, sizeof(MSG));

printf("%#p\n", buf);
[puts(buf);
[f(O);

puts(buf);

return 0;

I

1 shx 2 sh-
#include <stdio.h>

void f() {
char *xp;
asm ("mov %0,

printf("%#p\n", p);
pl124] = 'M';

egp” g "=C" (@)):

8 Nov

1:44 PM

normal:
cc main.c f.c -o normal

compart:
cc f.c —shared -o f.so

cc main.c f.so -o compart -W1l,—--dynamic-linker=/libexec/ld-elf-c18n.so0.1 -W1l,-rpath=.

[dpgao®cheribsd-dgé12:~/src/tap_demo $ 1ls —-lha

total 28
drwxr—-xr—x 2 dpgao dpgao 512B Nov
drwxr—-xr—x 12 dpgao dpgao 512B Nov

[-rw—r—1—— 1 dpgao dpgao 154B Sep
—IW-r——-r—— 1 dpgao dpgao 112B Sep
[-rwXT—XT—X 1 dpgao dpgao 5.2K Nov
—ITW-T——r—— 1 dpgao dpgao 206B Sep

[dpgao@cheribsd-dgé612:~/src/tap_demo $

8
5
15
15
8
15

13

16
16

16

dpgao@cheribsd-dgé12:~/src/tap_demo $ make

[
[

41 .
13: 30
145 Makefile
45 f.c

13:
145 main.c

20

35 f.so

normall

CHERIoT has two-dimensional isolation

Running code can access
the current compartment’s
state, on behalf of the

Compartments current thread
own code and

globals

Threads are scheduled independently and call through compartments

Compartmentalisation
with CHERIoT

e Compartments are invoked as
function calls / returns

e Safe returnis guaranteed by a
trusted stack

* Callees can access explicit
arguments

* Callees cannot access any
other caller state

Add compartmentalization to C/C++

// Declaration adds an attribute to i1ndicate

// the compartment containing the implementation
void __cheri_compartment("kv_store_sdk")
publish(char *key, uint8_t *buffer, size_t size);

-- Make sure it’s compiled in the right

-- compartment in xmake. lua

compartment("kv_store sdk'")
add_files("publish.cc")

Starting the exercise

https://github.dev/microsoft/cheriot-rtos

REMOTE EXPLORER | GitHub CQdespace v | -** [Preview] README.md X

CHERIoT RTOS

v GITHUB CODESPACES

Start coding instantly with Codespages.

Create Codespace This repository contains the core RTOS for the CHERIoT pIdform. This is currently a research project that has been open sourced to enable wider collaboration. It is
not yet in a state where it should be used in production: in paXticular, security issues will currently be fixed in the main branch of the repo with no coordinated

© v O

disclosure.
To use this, you will also some dependencies. The getting started oyide describes in detail how to build these:

e A version of LLVM with CHERIoT support

B %

| 2. Make sure it’s listing
openiti code Spaces

5]
—
>
]
(%2
(0]
Q.

4. When prompted for code space
configuration

@®

To clone this repository, make sure that you use git clone —-recurse so that yo .
wish to clone this repository on Windows, make sure that you have enabled Develop| Re pOS |t0 ry'

microsoft/cheriot-rtos
Branch:
main (default branch)

Size:
If you have questions, please see the frequently asked questions document or raise 2 VC P U S

ages

1 . ClICk on the RemOte cture for building CHERIoT firmware images.
Explorericon

rently based on xmake, but we have encountered a number of issues with our use of xmake and may switch to an alternative build

Clone this repo into your project and create an xmake. Lua referring to it. The file should start with this line:

\ HELP AND FEEDBACK

¥ Get Started

Read Documentation
@ ® Review Issues This will enable debug and release configuration (specified with -m {release, debug}). Both are compiled with -0z (optimise for size, even at the expense of

[Report Issue performance).

includes("{path to this repo}/sdk")

ll

% o o D

@ B

EXPLORER

v CHERIOT-RTOS [CODESPACES... [F7 U &

> .devcontainer
> .github
> benchmarks

,O cheriot-rtos [Codespaces: legendary cod] l:| Q [:D 0s

[Preview] README.md X oD M

CHERIoT RTOS

rrently a research project that has been open sourced to enable wider

This r
> docs / N avigate to the n particular, security issues will currently be fixed in the main branch of the
> examples

repo

v exerciseﬂﬁampartmentaIisation

cheri.js
crash.js

> hello.js

G+ js.cc

5 leak.js

$ load_js.sh

G+ microvium-ffi.hh

C+ secret.cc
C secret.h

xmake.lua

> scripts

> sdk

> tests
.clang-format
.clang-tidy

© .gitignore

® .gitmodules

I' azure-pipelines.yml
cgmanifest.json

¥ CODE_OF_CONDUCT.md
compile_commands.json
compile_flags.txt
LICENSE

@ README.md

compartmentalisation exercise.

To us¢ scribes in detail how to build these:

e A version of LLVM with CHERIoT support
e Animplementation of the ISA (e.g. CHERIoT-lbex or the emulator generated from the formal model))

These dependencies are pre-installed in the dev container that will be automatically downloaded if you open this repository in Visual Studio Code or
by hitting . to open it in GitHub Code Spaces.

To clone this repository, make sure that you use git clone —-recurse so that Spllt the terminal for Side-by-side

IMPORTANT: If you wish to clone this repository on Windows, make sure that yo term | na l.S
core.symlinks true. You must do this before cloning the repository.

The getting started guide describes how to install these and how to build the test suite and examples in thy

The RTOS is privilege separated into a small number of core components as described in the architecture document™ge C/C++ extensions used by

the compartmentalisation model are described in the language extensions document.

f you or raise an issue.

Read the README!

cheriot@co

(goash +~ [0 W -+ ~ X

Split Terminal (38))

Run commands in the two terminals

Run the simulator in one terminal

$ cd exercises/0l.compartmentalisation
$ xmake f --sdk=/cheriot-tools/

$./run_simulator.sh

JavaScript compartment: Secret stored at
Ox2004cc8c (v:1l 0x2004cc8c-0x2004cc90
1:0x4 0:0x0 p: G RWcgm- -- ---)
JavaScript compartment: Read 0Oxlac bytes
of bytecode

JavaScript compartment: Oxdf8 bytes of
heap available

Hello world

Compile JavaScript and send it to the UART from the other

$ cd exercises/0l.compartmentalisation
$./load_js.sh hello.js
Loading JavaScript:

Output generated: /dev/null
428 bytes

The exercise structure

* JavaScript code simulates an attacker with arbitrary code
execution.

e Attacks from JavaScript can:
* Leak a secret
* Crash the system
* Exhaust compartment memory

Each exercise will improve compartmentalisation to prevent one
attack.

Three exercises

I Move the code that owns the secret into a compartment.

<> Move the JavaScript interpreter into a compartment.
— Prevent crashes from leaking memory in the JavaScript
—

-— compartment.

