
Compartmentalisation
Workshop
Ben Laurie, David Chisnall

Reducing blast
radius

• What breaks if this crashes?
• What breaks if this is

compromised?
• What is leaked in either case?

Trust models for compartments
Sandbox

Things outside
are protected

Safebox
Things inside
are protected

Mutual Distrust
Protection in

both directions

The principle of least privilege
No compartment has rights that it doesn’t need

Library-based compartmentalisation

• Each dynamic library is a compartment
• Dynamic linker sets up trampolines between cross-compartment calls
• Clean up unused registers
• Switch the execution stack
• Etc.

Register File Register File

Caller Trampoline Callee

Dynamic Linker

via PLT

Generates Updates

Updates

Library A
Library B

TCB

Demo: Protecting against stack corruption

A pure_computation function is supplied by some untrusted third-
party library.

int pure_computation();

This function is supposed to have no side effects, but how do we
guarantee that?

The concrete implementation of C implicitly confers many more
powerful capabilities to the untrusted function. For example, it could
overwrite the stack frame of its caller…

CHERIoT has two-dimensional isolation

Compartments
own code and
globals

Threads are scheduled independently and call through compartments

Running code can access
the current compartment’s

state, on behalf of the
current thread

Compartmentalisation
with CHERIoT

• Compartments are invoked as
function calls / returns

• Safe return is guaranteed by a
trusted stack

• Callees can access explicit
arguments

• Callees cannot access any
other caller state

void
publish(char *key, uint8_t *buffer, size_t size);

// Declaration adds an attribute to indicate
// the compartment containing the implementation
 __cheri_compartment("kv_store_sdk")

Add compartmentalization to C/C++

-- Make sure it’s compiled in the right
-- compartment in xmake.lua
compartment("kv_store_sdk")
 add_files("publish.cc")
 ...

Starting the exercise
https://github.dev/microsoft/cheriot-rtos

https://github.dev/microsoft/cheriot-rtos

1. Click on the Remote
Explorer icon

2. Make sure it’s listing
code spaces

3. Create a code space

4. When prompted for code space
configuration
Repository:

microsoft/cheriot-rtos
Branch:

 main (default branch)
Size:

 2 VCPUs

Navigate to the
compartmentalisation exercise.

Split the terminal for side-by-side
terminals

Read the README!

Run commands in the two terminals

$ cd exercises/01.compartmentalisation
$ xmake f --sdk=/cheriot-tools/
...
$./run_simulator.sh
...
JavaScript compartment: Secret stored at
0x2004cc8c (v:1 0x2004cc8c-0x2004cc90
l:0x4 o:0x0 p: G RWcgm- -- ---)
JavaScript compartment: Read 0x1ac bytes
of bytecode
JavaScript compartment: 0xdf8 bytes of
heap available
Hello world

$ cd exercises/01.compartmentalisation

$./load_js.sh hello.js

Loading JavaScript:

...

Output generated: /dev/null

428 bytes

Run the simulator in one terminal Compile JavaScript and send it to the UART from the other

The exercise structure

• JavaScript code simulates an attacker with arbitrary code
execution.
• Attacks from JavaScript can:
• Leak a secret
• Crash the system
• Exhaust compartment memory

Each exercise will improve compartmentalisation to prevent one
attack.

Three exercises

Move the code that owns the secret into a compartment.

Move the JavaScript interpreter into a compartment.

Prevent crashes from leaking memory in the JavaScript
compartment.

