
CHERIoT:
Complete
memory safety
for embedded
devices

Saar Amar, David Chisnall, Tony
Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton,
Simon W. Moore, Yucong Tao, Robert
N. M. Watson, Hongyan Xia

Problem: microcontroller memory safety

Microcontrollers are
everywhere

SoCs (AMD SP, RoT…), peripheral
devices, IoT devices, vehicles,
industrial control, robots…

Security critical, hostile
environments

Firmware usually C / asm

Vulnerabilities are common e.g.
CVE-2021-26354

Some firmware never updated…

Constrained HW, little or no
security features

No MMU, small memory (100s kB)

SW defences rarely employed
(overhead? compatibility?)

HW defences absent or incomplete

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

CHERIoT project goals

Strong memory safety for existing C / C++ (actually any language, even assembly code)

Scalable compartmentalization for defense in depth, fault isolation, safe 3rd party code integration

Lightweight switching between compartments

Efficient sharing between compartments

Low hardware cost

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

chericpu.org

Starting point:
CHERI on 64-bit systems

• Hardware knows about pointers (aka capabilities)

• Pointers carry bounds

• Pointers carry permissions

• Pointers can’t be created from thin air
(constrained manipulation only)

• All guarantees are deterministic

• No guarantees rely on secrets

• All checks are constant time

All memory access instructions
require a valid pointer operand

CHERI Collaborators

Origin: Cambridge & SRI c. 2010

Government: DARPA, UKRI,
DSbD Program

Industry: arm (Morello SoC),
Google, HP, Microsoft, Linaro…

Academia: KCL, Imperial, Kent,
Queen’s, Oxford, Edinburgh, KU
Leuven, ETH Zurich…

Contributions in talk

1. Shrinking capabilities for RV32

2. Adding temporal safety for the heap

3. Building compartments using capabilities

4. Adding temporal safety for the stack

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

For 32-bits we have to shrink things

129-bit pointer

1-bit validity tag
(not addressable)

64-bit address

64-bit metadata

31-bit bounds

15-bit object type

18-bit permissions
See paper for details…

+1 spare!

65 32

32

revised CHERI-Concentrate22

Multiple roots & sw virtualization3

Compressed encoding6

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Adding temporal safety for heap
Add one-bit ‘is freed’ marker (revocation bit) per 8 bytes of heap memory

Load filter: check on pointer load and invalidate if freed

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Deterministic use-after-free protection in C/C++

 void *x = malloc(42);

 // Print the allocated value:

 Debug::log("Allocated: {}", x);

 free(x);

 // Print the dangling pointer

 Debug::log("Use after free: {}", x);

Allocating compartment: Allocated: 0x80005900 (v:1 0x80005900-0x80005930 l:0x30 o:0x0 p: G RWcgm- -- ---)

Allocating compartment: Use after free: 0x80005900 (v:0 0x80005900-0x80005930 l:0x30 o:0x0 p: G RWcgm- -- ---)

Valid bit cleared, any attempt to
use as a pointer will trap

Hidden detail:
Allocator is

compartmentalised so return
from free reloads x .

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

What about reusing memory?
Need to clear revocation bits before reuse, but have dangling pointers

Free

AllocatedQuarantined

malloc

free

revoke

1. allocate from free list
2. set pointer bounds
3. return pointer

1. set revocation bits 2. add to quarantine 3. can no longer load pointers to it

1. sweep all memory invalidating
dangling pointers

2. clear revocation bits
3. add to free list
• NOT synchronous: can make

concurrent in background

accumulate quarantine until
heuristic triggered
(e.g. % of heap quarantined)

Hardware revocation

Fetch Decode Execute Memory Writeback

Background
Load

Background
check

Revocation bitmap (SRAM)Main SRAM

Main pipeline

Background revokerIf the L/S unit is idle

Load a pointer-sized value
If it’s a pointer,
check if it’s freed

If it’s freed, invalidate
it in memory

From unforgeable pointers to compartments

• Reacheable memory is defined by
the capabilities in registers file

• We define isolated compartments
using program counter and global
pointer

• Call between them using a
trusted switcher

• Looks like a function call

• Use same stack…

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Stack sharing across compartments
Stack

Stack pointer

Initial compartment
has access to entire
stack.

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Stack sharing across compartments
Stack

Stack pointer

Inaccessible

What about stale caller
data here?

Zeroed

During compartment call
Switcher restricts stack

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Stack sharing across compartments
Stack

Stack pointer

What about stale
callee data here?

Zeroed (again)

Zeroed twice and unused!

Return to original
Compartment.

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Stack high-water mark

Every store into the stack (below the current
mark) moves the mark downwards

Tracks the most stack memory used

Only used stack memory needs to be zeroed

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Results

Coremark Overhead (2 implementations)

• Room for further compiler optimisations to reduce overhead
• Ibex overheads larger due to retaining 32-bit bus and shorter pipeline
• Still acceptable for many use cases!

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Allocation microbenchmark results (Ibex core)

• Microbenchmark designed to stress
allocator as much as possible: just
allocating and freeing 1MiB with no
useful work in between

• Worst case for revocation. Demonstrates
performance characteristics.

• Allocation size determines number of
iterations and hence compartment
crossing overhead (allocator is in separate
compartment from main loop)

• Small sizes: compartment crossing cost in
baseline is significant, revocation costs
small by comparison. SHWM outperforms
baseline.

• Large sizes: fewer compartment crossings
makes revocation cost more visible.
Benefits of hardware acceleration clear.

• Relative overhead in real applications
more reasonable.

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

Area and Power (TSMC 28nm HPC+):

• Comparable to PMP with much stronger security!

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

The whole
CHERIoT
stack is
open
source

https://github.com/microsoft/cheriot-sail

https://github.com/microsoft/cheriot-ibex

https://github.com/microsoft/cheriot-rtos

https://github.com/CHERIoT-Platform/llvm-project/

The ISA specification:
https://github.com/microsoft/cheriot-sail

The reference core:
https://github.com/microsoft/cheriot-ibex

The embedded OS:

https://github.com/microsoft/cheriot-rtos

The compiler (cheriot branch):

https://github.com/CHERIoT-Platform/llvm-project/

Any more questions, please ask in the GitHub Microsoft/CHERIoT-RTOS Discussions!
https://github.com/microsoft/cheriot-rtos/discussions/categories/q-a

Start here

https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-ibex
https://github.com/microsoft/cheriot-rtos
https://github.com/CTSRD-CHERI/llvm-project/

Thanks!

Memory overheads

• Tag bits: 1.6% for memory that might hold pointers
• Revocation bits: 1.6% for heap memory. Optional, but may save memory

vs. static memory allocation.
• Stack use: pointer and register spills doubled in size 
• Code size: some extra instructions (not measured in this paper)
• Compartments: some overhead for control structures (not in this paper)
• Pointer size:

• depends on application
• most data is not pointers (see prior CHERI work)
• Pointer heavy applications already use non-standard pointers e.g. js interpreter (see

microvium)

• Capability representability padding

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

Thread 1
Stack

Compartment A
code

Compartment A
globals

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

A0

Thread 1
Stack

Compartment A
code

Compartment B
code

Compartment A
globals

Compartment B
globals

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

A0

Thread 1
Stack

Compartment A
code

Compartment B
code

Compartment A
globals

Compartment B
globals

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

From unforgeable pointers to compartments

Registers

SP

Memory

PC

GP

A0

Thread 1
Stack

Compartment A
code

Compartment B
code

Compartment A
globals

Compartment B
globals

Thread 1
Stack (B’s
subset)

CHERIoT: Complete memory safety for embedded devices,
Robert Norton, Microsoft

	Slide 1: CHERIoT: Complete memory safety for embedded devices
	Slide 2: Problem: microcontroller memory safety
	Slide 3: CHERIoT project goals
	Slide 4: chericpu.org Starting point: CHERI on 64-bit systems
	Slide 5: Contributions in talk
	Slide 8: For 32-bits we have to shrink things
	Slide 11: Adding temporal safety for heap
	Slide 12: Deterministic use-after-free protection in C/C++
	Slide 13: What about reusing memory? Need to clear revocation bits before reuse, but have dangling pointers
	Slide 14: Hardware revocation
	Slide 15: From unforgeable pointers to compartments
	Slide 16: Stack sharing across compartments
	Slide 17: Stack sharing across compartments
	Slide 18: Stack sharing across compartments
	Slide 19: Stack high-water mark
	Slide 20: Results
	Slide 21: Coremark Overhead (2 implementations)
	Slide 22: Allocation microbenchmark results (Ibex core)
	Slide 23: Area and Power (TSMC 28nm HPC+):
	Slide 25: The whole CHERIoT stack is open source
	Slide 26: Thanks!
	Slide 27: Memory overheads
	Slide 28: From unforgeable pointers to compartments
	Slide 29: From unforgeable pointers to compartments
	Slide 30: From unforgeable pointers to compartments
	Slide 31: From unforgeable pointers to compartments

