
CHERIoT Architecture specification
Version 0.6 (draft)

Saar Amar, Tony Chen, David Chisnall, Felix Domke,
Nathaniel Wesley Filardo, Kunyan Liu, Robert M. Norton, Yucong Tao,

Robert N. M. Watson, Hongyan Xia

13th September 2024



2



Abstract

Small embedded cores have little area to spare for security features and yet must often
run code written in unsafe languages and, increasingly, are exposed to the hostile Internet.
CHERIoT (Capability Hardware Extension to RISC-V for Internet of Things) builds on
top of CHERI and RISC-V to provide an ISA and software model that lets software depend
on object-granularity spatial memory safety, deterministic use-after-free protection, and
lightweight compartmentalization exposed directly to the C/C++ language model. This
can run existing embedded software components on a clean-slate RTOS that scales up to
large numbers of isolated (yet securely communicating) compartments, even on systems
with under 256 KiB of SRAM.

3



4

Acknowledgments
This document contains some elements from the CHERI ISA Specification1, which is
licensed under the Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit:

http://creativecommons.org/licenses/by/4.0/

We acknowledge all the authors of that report:

Robert N. M. Watson Peter G. Neumann Jonathan Woodruff Michael Roe
Hesham Almatary Jonathan Anderson John Baldwin Graeme Barnes
David Chisnall Jessica Clarke Brooks Davis Lee Eisen
Nathaniel Wesley Filardo Richard Grisenthwaite Alexandre Joannou Ben Laurie
A. Theodore Markettos Simon W. Moore Steven J. Murdoch Kyndylan Nienhuis
Robert Norton Alexander Richardson Peter Rugg Peter Sewell
Stacey Son Hongyan Xia

as well as the many other contributors to the CHERI project:

Sam Ainsworth Ross J. Anderson Ruben Ayrapetyan Hadrien Barral
Thomas Bauereiss Stuart Biles Andrew Bivin Peter Blandford-Baker
Matthias Boettcher David Brazdil Reuben Broadfoot Kevin Brodsky
Ruslan Bukin Brian Campbell Gregory Chadwick Serban Constantinescu
Chris Dalton Nirav Dave Dominique Devriese Mike Dodson
Lawrence Esswood Jonas Fiala Wedson Filho Anthony Fox
Paul J. Fox Franz Fuchs Ivan Gomes Ribeiro Paul Gotch
Tom Grocutt Khilan Gudka Brett Gutstein Jong Hun Han
Andy Hopper Alex Horsman Timothy Jones Asif Khan
Myron King Joe Kiniry Chris Kitching Wojciech Koszek
Robert Kovacsics Karthik Muthusamy Patrick Lincoln Marno van der Maas
Anil Madhavapeddy Ilias Marinos Tim Marsland Ed Maste
Alfredo Mazzinghi Kayvan Memarian Dejan Milojicic Andrew W. Moore
Will Morland Alan Mujumdar Prashanth Mundkur Edward Napierala
Philip Paeps Lucian Paul-Trifu Austin Roach Colin Rothwell
John Rushby Hassen Saidi Hans Petter Selasky Andrew Scull
Muhammad Shahbaz Bradley Smith Lee Smith Ian Stark
Ramy Tadros Andrew Turner Richard Uhler Munraj Vadera
Jacques Vidrine Hugo Vincent Philip Withnall Bjoern A. Zeeb

1https://github.com/CTSRD-CHERI/cheri-specification

http://creativecommons.org/licenses/by/4.0/
https://github.com/CTSRD-CHERI/cheri-specification


5

The CHERI-RISC-V pseudocode is derived from the Sail CHERI-RISC-V model2, which
has the following license:

This CHERI Sail RISC-V architecture model here, comprising all files and
directories except for the snapshots of the Lem and Sail libraries in the
prover_snapshots directory (which include copies of their licenses), is subject
to the BSD two-clause licence below.

Copyright (c) 2017-2021 Alasdair Armstrong, Thomas Bauereiss, Brian Campbell,
Jessica Clarke, Nathaniel Wesley Filardo (contributions prior to July 2020,
thereafter Microsoft), Alexandre Joannou, Microsoft, Prashanth Mundkur,
Robert Norton-Wright (contributions prior to March 2020, thereafter
Microsoft), Alexander Richardson, Peter Rugg, Peter Sewell

All rights reserved.

This software was developed by SRI International and the University of
Cambridge Computer Laboratory (Department of Computer Science and
Technology) under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and
under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA
SSITH research programme.

This software was developed within the Rigorous Engineering of
Mainstream Systems (REMS) project, partly funded by EPSRC grant
EP/K008528/1, at the Universities of Cambridge and Edinburgh.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement 789108, ELVER).

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

2https://github.com/CTSRD-CHERI/sail-cheri-riscv

https://github.com/CTSRD-CHERI/sail-cheri-riscv


6

The RISC-V pseudocode is derived from the Sail RISC-V model3, which has the following
license:

This Sail RISC-V architecture model, comprising all files and
directories except for the snapshots of the Lem and Sail libraries
in the prover_snapshots directory (which include copies of their
licences), is subject to the BSD two-clause licence below.

Copyright (c) 2017-2021 Prashanth Mundkur, Rishiyur S. Nikhil and
Bluespec, Inc., Jon French, Brian Campbell, Robert Norton-Wright,
Alasdair Armstrong, Thomas Bauereiss, Shaked Flur, Christopher Pulte,
Peter Sewell, Alexander Richardson, Hesham Almatary,
Jessica Clarke, Microsoft, for contributions by Robert Norton-Wright and
Nathaniel Wesley Filardo, Peter Rugg,
Aril Computer Corp., for contributions by Scott Johnson

All rights reserved.

This software was developed by the above within the Rigorous
Engineering of Mainstream Systems (REMS) project, partly funded by
EPSRC grant EP/K008528/1, at the Universities of Cambridge and
Edinburgh.

This software was developed by SRI International and the University of
Cambridge Computer Laboratory (Department of Computer Science and
Technology) under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and
under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA
SSITH research programme.

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement 789108, ELVER).

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

3https://github.com/riscv/sail-riscv

https://github.com/riscv/sail-riscv


Contents

I Software model and toolchain 13

1 Introduction 15
1.1 The CHERIoT RTOS Model . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Security goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Heap memory safety . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Local stack memory safety . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Cross-compartment stack memory safety . . . . . . . . . . . . . 18
1.2.4 Global memory safety . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Higher-level security properties . . . . . . . . . . . . . . . . . . 19
1.2.6 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Compartment model 21
2.1 Compartments define spatial ownership . . . . . . . . . . . . . . . . . . 22
2.2 Threads define temporal ownership . . . . . . . . . . . . . . . . . . . . . 23
2.3 Execution at the intersection of threads and compartments . . . . . . . . 24
2.4 Compartment switches enforce compartment isolation . . . . . . . . . . . 24
2.5 Context switches enforce thread isolation . . . . . . . . . . . . . . . . . 25
2.6 Adding shared libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 RTOS implementation 29
3.1 Per-thread state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Synchronization and scheduling primitives . . . . . . . . . . . . . . . . . 31
3.5 The memory allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Other components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7



8 CONTENTS

4 C/C++ language and toolchain extensions 35
4.1 Specifying compartments . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Exposing library calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Controlling interrupt state . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Linking compartments . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 ABI 39
5.1 Compartment layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Access to globals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Export table layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Import table layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Cross-compartment calls . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Cross-library calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8 Relocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Known caveats 47
6.1 Shared stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Explicit leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Architecture specification 51

7 The CHERIoT ISA 53
7.1 Starting subset of RV32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Omitted CHERI features . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.3 Changes to register file . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4 Instruction encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5 Changes to instruction fetch / control flow . . . . . . . . . . . . . . . . . 54
7.6 Changes to memory accesses . . . . . . . . . . . . . . . . . . . . . . . . 55
7.7 Tagged memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.8 Temporal safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.9 Controlling access to system registers . . . . . . . . . . . . . . . . . . . 56
7.10 Special capability registers . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11 Changes to exception handling . . . . . . . . . . . . . . . . . . . . . . . 58
7.12 The AUIPC and AUICGP instructions . . . . . . . . . . . . . . . . . . . 59
7.13 Capability encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.13.1 Capability permissions . . . . . . . . . . . . . . . . . . . . . . . 60



CONTENTS 9

7.13.2 Sealed capabilities . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.13.3 Capability bounds . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.13.4 Set bounds operation . . . . . . . . . . . . . . . . . . . . . . . . 68
7.13.5 Representability checks . . . . . . . . . . . . . . . . . . . . . . 69
7.13.6 The NULL capability . . . . . . . . . . . . . . . . . . . . . . . . 71
7.13.7 Zero length capabilities . . . . . . . . . . . . . . . . . . . . . . . 71
7.13.8 Zero permission capabilities . . . . . . . . . . . . . . . . . . . . 71
7.13.9 Capability layout in memory . . . . . . . . . . . . . . . . . . . . 72
7.13.10 Sail implementation . . . . . . . . . . . . . . . . . . . . . . . . 72

7.14 Instruction compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.15 Stack high water mark . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Instruction encoding summary 75
8.1 Primary new instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Capability-Inspection Instructions . . . . . . . . . . . . . . . . . 75
8.1.2 Capability-Modification Instructions . . . . . . . . . . . . . . . . 76
8.1.3 Pointer-Arithmetic Instructions . . . . . . . . . . . . . . . . . . 76
8.1.4 Pointer-Comparison Instructions . . . . . . . . . . . . . . . . . . 76
8.1.5 Special Capabilty Register Access Instructions . . . . . . . . . . 76
8.1.6 Adjusting to Compressed Capability Precision Instructions . . . . 77

8.2 Modifications to existing RISC-V instructions . . . . . . . . . . . . . . . 77
8.2.1 Control-Flow Instructions . . . . . . . . . . . . . . . . . . . . . 77
8.2.2 Memory-Access Instructions . . . . . . . . . . . . . . . . . . . . 77
8.2.3 Address Construction Instructions . . . . . . . . . . . . . . . . . 77

8.3 Encoding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9 Instruction reference 83
9.1 Sail language used in instruction descriptions . . . . . . . . . . . . . . . 83
9.2 Constant Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3 Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.4 CHERIoT Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

AUICGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
AUIPCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
CAndPerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
CClearTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
CGetAddr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
CGetBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
CGetHigh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



10 CONTENTS

CGetLen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
CGetPerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
CGetTag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
CGetTop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
CGetType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
CIncAddr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
CIncAddrImm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
CJAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
CJALR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
CLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
CMove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
CRepresentableAlignmentMask . . . . . . . . . . . . . . . . . . . . . . 110
CRoundRepresentableLength . . . . . . . . . . . . . . . . . . . . . . . . 111
CSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
CSeal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
CSetAddr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CSetBounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
CSetBoundsExact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
CSetBoundsImm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
CSetEqualExact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
CSetHigh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
CSpecialRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
CSub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
CTestSubset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
CUnseal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III Appendices 127

A Version history 129

B Sail listings for capability encoding 131
B.1 SMT validation of properties of the capability encoding . . . . . . . . . . 137

C Permission compression rationale 141

D Potential revised bound encoding 143



CONTENTS 11

E Proposed compressed instruction encoding changes 145
E.1 Compressed CMove and CIncAddr . . . . . . . . . . . . . . . . . . . . . . 145
E.2 Three-operand compressed instructions . . . . . . . . . . . . . . . . . . 146

F Standing on the Shoulders of Giants 147
F.1 CTSRD CHERI, CHERI-RISC-V, Morello, and CheriBSD . . . . . . . . 147

F.1.1 Translation vs. Protection . . . . . . . . . . . . . . . . . . . . . 147
F.2 Incorporated CHERI Extensions . . . . . . . . . . . . . . . . . . . . . . 148

F.2.1 Multi-Root, Compressed Permission Encodings . . . . . . . . . . 148
F.2.2 Recursive Permissions . . . . . . . . . . . . . . . . . . . . . . . 148
F.2.3 Architectural Seals . . . . . . . . . . . . . . . . . . . . . . . . . 149
F.2.4 Capability Load Barrriers and Memory-Capability Versioning . . 149

F.3 Esswood’s CheriOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
F.4 Xia’s CheriRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
F.5 Almatary’s CompartOS and CheriFreeRTOS . . . . . . . . . . . . . . . . 151

Bibliography 153



12 CONTENTS



Part I

Software model and toolchain

13





Chapter 1

Introduction

The CHERIoT (Capability Hardware Extension to RISC-V for Internet of Things, pro-
nounced like ’chariot’) design is heavily based on prior work by the CHERI project. Our
RISC-V extension is based on the CHERI ISAv8[22] and would not have been possible
without this work.

This document describes the current status of the CHERIoT ISA. This ISA is not in-
tended to be a final CHERI specification for embedded RISC-V devices but is a work-in-
progress that is sufficiently close to final that feedback is valuable. In particular, the current
C extension to RISC-V makes a number of optimization decisions that are not useful in
a CHERI context and so we would likely benefit from an alternative (as yet unspecified)
16-bit instruction extension for embedded CHERI targets.

The CHERIoT project would not have been possible without the existing “big CHERI”
research [6, 22], exploration of green-field CHERI-aware operating systems [8], and work
to adapt CHERI software models to embedded systems [1, 2, 24, 25]. This ISA attempts to
scale CHERI down yet further, into smaller embedded systems than previously considered;
we have taken the opportunity to simultaneously design our ISA, compartment model,
programmer model, compiler, and RTOS [16]. The capability encoding and instruction set
have been tuned to enable this use and validated by running existing embedded software in
compartments. Curious readers are invited to see our study of related works in Appendix F.

This document describes:

• The RISC-V ISA extension (Part II).
• The compartment model that the ISA is intended to support (Chapter 2).
• The RTOS implementation used to enforce the model (Chapter 3)
• The language extensions used to expose this model to developers (Chapter 4).
• The ABI used to implement the compartment model (Chapter 5).

15



16 CHAPTER 1. INTRODUCTION

Performance, power, and area costs for the implementation are not part of this and will
be presented in a follow-up publication.

1.1 The CHERIoT RTOS Model

Because the ISA given here is the result of simultaneous design with software, we will of-
ten refer to software concepts for motivation or justification of design choices. Particularly
central to the discussion are the notions of memory safety, compartments, and threads. We
provide coarse definitions here and will refine them as we continue.

A thread is a schedulable entity associated with a general-purpose register file and a
designated region of memory for use as a call stack. Threads are either running, in which
case their register file is the CPU’s, or suspended, in which case the register file is saved
to memory for later use.

A system is said to be memory safe if its references to memory are:

Unforgeable A reference to memory (in particular, the authority to access memory) can
be constructed only from other references.

Monotonic A constructed reference will have no more authority than its progenitor refer-
ence(s) (and may have less).

Spatially Safe References to memory authorize access to a set of memory locations de-
termined when the reference is constructed.

Temporally Safe References to a region of memory will not remain usable across reuse
of memory for a different allocation.

CHERIoT is based on CHERI and so language-level references are expected to compile
down to CHERI capabilities. We may gloss over subtle distinctions and conflate the terms
“capability,” “pointer,” and “reference.”

A compartment is a collection of code, data, and capabilities that serves as an invoca-
ble security context. Compartments statically export entry-points, which may be statically
imported by other compartments or passed as opaque cross-compartment function point-
ers. A compartment that (statically or dynamically) imports an entry point may then invoke
it to perform a cross-compartment call. Such calls are synchronous and transition the call-
ing thread from one compartment to another. The thread’s stack is used, with appropriate
bounds adjustment, in both the caller and callee compartment.



1.2. SECURITY GOALS 17

1.2 Security goals
We aim to provide a minimal TCB that can run user software (including third-party code)
in compartments. These compartments are not part of the TCB and are assumed to have a
mutual distrust relationship with each other.

We define a set of security guarantees that apply to all untrusted compartments. These
guarantees are enforced by three system components, which form the TCB for confiden-
tiality and integrity. These components are:

The loader, which is responsible for setting up all of the initial capabilities for everything
in the system. This never accesses any data that was not part of the initial firmware
image.

The switcher, which is responsible for transitions between compartments and between
threads. This is around 300 instructions in hand-written assembly.

The memory allocator, which is responsible for providing the hardware with the infor-
mation required to enforce heap memory safety.

The code in these components must be carefully audited.
An embedded system may have user-provided components that run at the highest pri-

ority level, with interrupts disabled. Any code that runs with interrupts disabled is part of
the TCB for availability.

1.2.1 Heap memory safety
CHERIoT RTOS provides a heap, a system-provided compartment with dedicated mem-
ory to which it grants other compartments dynamic, temporary access.

The allocator ensures that the capabilities it gives out have bounds that do not overlap
any other allocation, and so the CHERI bounds checks enforce spatial memory safety.
Heap memory is also temporally safe: no heap memory will be reused until the system has
ensured that all dangling pointers to it are deallocated. The hardware provides a guarantee
that no capability can be loaded if the memory allocator has marked the memory it points to
as deallocated. This mechanism is described in detail in Section 7.8. A revocation service
(which can be implemented in hardware or software) periodically scans all memory and
deletes capabilities that point to revoked memory.

The memory allocator is part of the TCB as it could violate confidentiality and integrity
in a number of ways. It holds a capability to the entire heap and so, in principle, can
violate confidentiality of heap contents either directly or by failing to clear memory before
issuing an allocation in reused space. Similarly, it can violate integrity by directly using or
improperly revealing capabilities held within heap memory. It can violate spatial safety by



18 CHAPTER 1. INTRODUCTION

not correctly bounding capabilities it returns. Finally, it could violate temporal safety by
either not marking freed objects as deallocated or by un-marking the memory and reusing
it before revocation.

However, despite all that, the memory allocator does not hold capabilities to normal
compartment memory, only to region(s) reserved for the heap it manages. As such, even a
completely compromised memory allocator can violate safety properties of the heap only;
it cannot directly violate memory safety for non-heap memory.

1.2.2 Local stack memory safety

Allocations on a thread’s stack are bounded by CHERI capabilities – the compiler gener-
ates instructions to derive these capabilities from the stack capability – but are not guaran-
teed to be temporally safe.

However, CHERIoT ISA and CHERIoT RTOS have mechanisms to ensure that capa-
bilities to stack allocations can not be stored anywhere other than on the stack to which
they point (which may include address-taken allocations on the caller’s portion of the
stack). In practice, this means that violating stack temporal safety is very difficult: stack-
derived capabilities cannot be stored onto the heap or into a global (it will deliver a trap).
Therefore, the only way of having a stack pointer outlive the allocation is to store it through
another stack-derived pointer that points to a higher frame or return it directly in a register.

1.2.3 Cross-compartment stack memory safety

During a cross-compartment call, the thread and its stack transition security contexts. The
stack bounds are restricted so that the callee has no access to the caller’s stack, except via
capabilities that are explicitly passed as arguments. This suffix of stack memory accessible
to the callee is zeroed both on call and on return, which prevents any information leak from
uninitialized memory. The implicit stack pointer and stack-derived arguments provided by
the caller are the only pointers that are both held by a compartment and capable of storing
other stack-derived pointers.

Lexically-Scoped Delegation

CHERIoT ISA’s capability permission scheme allows software to derive variants of capa-
bilities that can be stored only to stack memory. Additionally, CHERIoT ISA can impose
this derivation transitively per capability: any capability loaded via such a capability be-
comes another such and, so, will impose the same on those loaded through it, and so on.



1.2. SECURITY GOALS 19

These two mechanisms allow for lexically-scoped delegation: a calling compartment
may, for any capability it holds, construct a variant that can only be stored to the stack and
can load only capabilities that can be stored only to the stack. Passing this derived capa-
bility to the callee ensures that the callee compartment cannot capture either the passed
capability or any loaded through it in memory not visible to (and mutable by) the caller
after return.

1.2.4 Global memory safety
All objects with static storage duration are compartment-local and are visible to any thread
executing within a compartment. Memory safety for globals is therefore advisory (un-
trusted code can simply access the global capability directly). The compiler will insert
bound for any address-taken global. Immutable objects with static storage duration are
derived from PCC (with the execute permission removed) and so cannot be written to.

1.2.5 Higher-level security properties
The local security properties outlined above are used to build isolation between threads
and compartments. This leads to the following high-level security goals:

• No compartment should be able to access another compartment’s data, except where
explicitly shared.

• No thread should be able to access another thread’s data, except where explicitly
shared.

Compartments that have not been explicitly granted the rights to run with interrupts
disabled should also not be able to impact availability.

1.2.6 Threat model
We assume that code running in a compartment is untrusted. As such, an attacker is
assumed to have the ability to execute arbitrary code within a compartment. It is not
possible to prevent programmers from introducing bugs but we aim to provide a set of
tools that will make it easy to write code in a compartment that is able to protect itself
from another attacker-controlled compartment that can invoke its entry points.



20 CHAPTER 1. INTRODUCTION



Chapter 2

Compartment model

CHERI is designed to support fine-grained compartmentalization. A compartment, in the
CHERI sense, is defined by the memory that is transitively reachable1 from the capability
registers in the running code. The mechanism for transitioning between compartments is
key to any CHERI compartmentalization strategy.

The original CHERI/MIPS prototype had an instruction that raised a synchronous
abort, providing a transition into an in-kernel compartment switcher. Morello and newer
CHERI/RISC-V implementations for large systems have instructions that perform atomic
unsealing and domain transition. This provides a rich set of tools for building compart-
mentalization models but leaves concerns such as stack management to the software stack.
The CHERIoT model relies on a mixture of hardware and software to enforce compart-
ment isolation.

The threat model for this work assumes that compartments all exist in a mutual distrust
relationship with each other. Compartments should not be able to see or tamper with other
compartments’ data unless they are explicitly granted access to it via capabilities passed
across an exposed interface.

Compartments, in isolation, are not automatically trusted (or untrusted) with respect
to availability. Each compartment explicitly lists the entry points that it exposes or may
invoke that run with interrupts disabled and it is the responsibility of the firmware integra-
tor to determine whether this is acceptable. For a compartment to run code with interrupts
disabled, the linker and loader must have explicitly granted it these rights when initializ-
ing capabilities, and so it is possible for the firmware integrator to audit the compartment
graph.

This is intended to give flexibility for system integrators with different levels of real-
time requirements. At one extreme, a hard-realtime control loop can run in a realtime-

1i.e. including memory reachable from capabilities loadable from memory by any number of indirections

21



22 CHAPTER 2. COMPARTMENT MODEL

priority thread, with interrupts disabled except at explicit yield points. Other threads in
such a system would not be allowed to call any compartment entry points that can invoke
functions that run with interrupts disabled and so the realtime-priority thread can always
resume in the context-switch time. A somewhat softer realtime system may allow a small
number of functions to be invoked from compartments that are exposed to lower-priority
threads. These functions would be audited to ensure that their worst-case execution time
didn’t cause realtime components to miss their guarantees. At the weakest extreme, global
forward progress is purely a best-effort objective and any compartment may be allowed to
call functions that have no guarantees on bounded execution time and run with interrupts
disabled.

We expect that compartments may be provided by untrusted third parties and so it is
important that every cross-compartment interaction is amenable to auditing. In particu-
lar, the linker can see everything that the loader will set up and the loader is required to
explicitly grant access to a compartment for every:

• MMIO region that a compartment has access to.
• Cross-compartment entry point that a compartment exposes (and its interrupt status

on entry).
• Internal function that a compartment may run with interrupts disabled.
• Cross-compartment call that a compartment may perform to another compartment.
• Shared library routine that a compartment may invoke.

This is sufficient to retrieve a complete graph of cross-compartment communication,
including which compartments may be running with interrupts disabled. This provides
tools for firmware integrators to write policies such as:

• Only the specific code that the regulator approved may communicate directly with
this device.

• Any code may run on the device but only the TLS compartment may talk to the
network stack and only a compartment that exposes a small set of well-defined APIs
may call the TLS stack.

• There must be no interaction between any of the compartments managing service
A and the compartments managing service B on the device, except yielding via the
scheduler.

2.1 Compartments define spatial ownership
At its most reductionist, a CHERIoT RTOS compartment is defined by two registers:



2.2. THREADS DEFINE TEMPORAL OWNERSHIP 23

PCC is the program-counter capability, which is used to reach code and read-only globals.
CGP is the capability global pointer, which is used to reach read-write globals.

These define a set of code and data that represents a compartment. A compartment
is a single security context. While running in a compartment, any code in the memory
reachable by PCC may be executed, any data in that memory may be read, and any data
in the globals reachable from CGP may be read or written.

Note, in particular, that compartments are responsible for enforcing an object abstrac-
tion on top of their global memory. The C/C++ compiler will automatically insert bounds
when the address of a global is taken but an assembly programmer in a compartment is
able to reach any globals. Our security model assumes that all code within a compartment
trusts all other code within that compartment.

2.2 Threads define temporal ownership

A CHERIoT RTOS thread is a schedulable entity that owns a stack, a trusted stack, and a
register set. When a thread is scheduled, it owns the microcontroller’s register file. When
it is suspended, the register file is stored in a register save area.

Each thread is isolated from other threads. The CHERIoT ISA provides a simple 2-bit
information-flow enforcement mechanism in the form of the global bit and the store-local
permission. Capabilities without the global bit can be stored only via capabilities that
have the store-local permission. In CHERIoT RTOS, only three types of memory have the
store-local permission:

Stacks, reachable from a running thread’s CSP and any capabilities derived from this
(address-taken stack allocations).

Register save areas, reachable only from a special capability register (SCR) that are used
to store a thread’s state on context switch.

Trusted stacks, reachable only from a SCR, which are used to save and restore the stack
pointer on compartment switch (more on this later).

Of these, normal compartment code has access only to the stack. The latter two are a
single allocation that is reached via a SCR. The switcher is the only code that runs (after
the loader has exited) with the rights to access this SCR. Threads’ register files and stacks
dynamically define a set of reachable objects.



24 CHAPTER 2. COMPARTMENT MODEL

2.3 Execution at the intersection of threads and compart-
ments

Threads do not own code and compartments do not own a register file. Execution requires
(at least) both of these and happens when a thread is scheduled to run within a specific
compartment. Each thread starts at an entry point within a compartment and execution
continues within that compartment until either the thread calls another compartment or a
context switch invokes another thread.

This means that running code always has access to the code for the current compart-
ment, the globals for the current compartment, the part of a thread’s stack and register state
associated with the current compartment invocation.. Two threads might be in the same
compartment at the same time (one of them preempted or yielded, the other running), if
the compartment permits this. If two threads enter the same compartment (either at the
same time or sequentially) then they will see the same set of globals and can use them to
communicate.

Globals (more specifically, capabilities derived from the value in the CGP register) do
not have store-local and so it is not possible to construct a capability that is reachable from
a global and which points to a stack allocation. This gives strong cross-thread isolation. If
a thread enters a compartment that is compromised, a thread running compromised code
within that compartment cannot tamper with the victim thread’s stack or register file and
must use data-oriented attacks from data reachable from globals.

2.4 Compartment switches enforce compartment isolation
Cross-compartment calls require that a thread loses access to one compartment and gains
access to another. CHERI provides a sealing mechanism to build this kind of model. We
use this with an explicit compartment switcher to build a robust compartment invocation
mechanism for embedded systems.

When a thread wishes to invoke another compartment, it loads two capabilities from
its import table (see Chapter 5). The first is a sealed capability to a structure describing the
entry point in the callee. The second is a sentry capability to the compartment switcher.
The sealed capability is passed in a register when the sentry capability is called.

A CHERI sentry is a capability that can be jumped to but cannot be used for any other
operations. The CHERIoT ISA extends this by allowing different kinds of sentry to control
interrupt state. The sentry for the compartment switcher implicitly disables interrupts on
entry to the switcher, which makes it easier to reason about the execution flow within the
switcher.



2.5. CONTEXT SWITCHES ENFORCE THREAD ISOLATION 25

The compartment switch routine unseals the target capability and uses it to find the
PCC and CGP of the target compartment, and the offset within the PCC. It can then
construct a target to invoke. In addition, it reads the number of registers that the callee
expects to have passed (which it uses to zero unused argument registers) and the interrupt
status for the callee (which it uses to reenable interrupts immediately prior to invocation,
if required). The RV32E ABI defines only two callee-save registers. The switcher saves
these onto the trusted stack and then zeros all non-argument registers except for CGP and
CSP, which have special handling.

In addition to these steps, the compartment switcher is responsible for preventing the
stack from being used to leak data between compartments (other than via explicit argu-
ments). This requires several steps. First, the stack passed in the CSP register must be
shrunk to allow CHERI’s spatial bounds protection to prevent any access by the callee
to the caller’s portion of the stack. Second, both before a call and before completing the
return transition, the compartment switcher zeroes the portion of the stack that is made
available to the callee. Zeroing the stack seems expensive but recall that in embedded sys-
tems a 2 KiB stack is considered very large. Our stacks are typically 1 KiB. With a 33-bit
memory bus, we need 256 stores (in the worst case) to zero the whole thing. That’s more
expensive than a function call, but not vastly so. Additionally, the hardware provides a
stack high water mark (see Section 7.15) to minimise the amount of zeroing required.

At the end of a compartment transition, the new compartment has access to:

• Its own code (PCC)
• Its own globals (CGP)
• A portion of the thread’s stack, excluding any frames owned by the caller, and full

of zeroes.
• Any memory pointed to by argument capability registers, passed explicitly from the

caller.

On return, any temporary state is cleared and the caller has access only to explicit
return capabilities.

This does not prevent one compartment from having access to another compartment’s
globals, but there are legitimate reasons for wanting this. For example, a compartment
may derive a read-only (no store permission) capability to one of its globals and use that
to cheaply broadcast state updates to subscribers.

2.5 Context switches enforce thread isolation
Context switches happen as a result of an interrupt (including synchronous aborts / excep-
tions). The context switcher code saves the register file into a save area pointed to by a



26 CHAPTER 2. COMPARTMENT MODEL

SCR. The register save area and the trusted stack are both reached by the same SCR and
the two switchers (thread and compartment) are the only code in the system that runs with
permission to access this register after the loader has finished.

The context switch routine (part of the switcher’s approximately 300 instructions) is
the only code that is able to violate thread isolation. It has access to two threads simulta-
neously:

• The stack pointed to by CSP on entry to the interrupt handler.
• The stack that the scheduler will use, loaded from a read-only global in the switcher’s

PCC.

Before invoking the scheduler, the switcher will seal the capability to the register save
area (from which the stashed CSP is reachable) and pass it as an argument into the sched-
uler. The scheduler is therefore in the TCB for availability but, crucially, not for confiden-
tiality or integrity.

The scheduler runs with interrupts disabled and selects the next thread to run, returning
a (sealed) capability to the register save area to the switcher. This must be sealed with
the object type that the switcher expects. The loader guarantees that nothing except the
switcher has a permit-seal capability for that type and so the scheduler is able only to
provide register save areas that were previously provided by the loader or the switcher.

The current CHERIoT RTOS scheduler is a very simple priority scheduler that does
round-robin scheduling within a priority level. A more complex one could be added for
use cases that need something more complex without changing the security model. Con-
versely, an even simpler scheduler that exposes a less rich set of inter-thread communica-
tion primitives could be used for safety-critical systems.

The scheduler is a compartment just like any other and so can expose more complex
scheduling operations such as message queues as cross-compartment calls that then ex-
plicitly yield.

2.6 Adding shared libraries

In a compartmentalized system it is very common to have routines that are required from
many different compartments. This is trivial to support by duplicating the code into all
compartments that use it. On large systems with a memory-management unit it’s possible
to logically duplicate the code in the virtual address space without duplicating it in the
physical address space. This is not possible on a system such as ours, without any virtual
memory support.



2.6. ADDING SHARED LIBRARIES 27

Instead, CHERIoT RTOS provides a shared-library abstraction that is designed to work
in concert with our compartmentalization model. A shared library is much like half of a
compartment: it may contain code and read-only data (PCC) but may not contain read-
write globals and so runs with the CGP of the caller. A function in a shared library runs
with the context of the caller and so invoking a shared-library function does not need to go
via the compartment switcher.

Cross-library calls, as with cross-compartment calls, must change PCC to a specific
location in another block of code. This is enforced by the loader providing callers with a
sentry capability to the jump target. This prevents the caller from being able to jump to
arbitrary points in a shared library. It also allows shared libraries to expose routines that
run with interrupts disabled. For example, on a core that doesn’t provide native atomics,
we can expose atomic-increment functions that perform a simple read-modify-write with
interrupts disabled, without having to go via the compartment switcher.



28 CHAPTER 2. COMPARTMENT MODEL



Chapter 3

RTOS implementation

The CHERIoT RTOS is intended to provide a minimal TCB. The core of the RTOS com-
prises:

A loader, which runs before any untrusted data is encountered and sets up the capabilities
for the rest of the system.

Switch routines, which add up to around 300 instructions in hand-written assembly, for
switching between thread and compartments.

A heap allocator, which allocates memory from a shared heap for use by compartments.
A scheduler, which selects the next thread to run.

Of these, only the loader and the switch routines run with access to the trusted stack
and register save areas (that is, with the access-system-registers permission on their PCC).
This means that these are the only two that can completely compromise all of the security
properties on which the rest of the system is built. The loader runs once on system start
and then erases itself. The loader is not needed on systems where the persistent storage
(e.g. flash) can store tag bits.

The switch routines (currently) add up to a total of around 300 instructions, with no
memory allocation and very little control flow. For comparison, the trusted (unverified)
part of seL4 is 340 instructions [12], so CHERIoT RTOS contains less code in its TCB
than seL4 contains unverified code in its TCB.

The heap allocator holds capabilities to the shared heap and the revocation bitmap for
the shared heap and so is able to violate heap memory safety. The scheduler is more or
less an untrusted compartment, though with a private stack. Importantly, the scheduler
does not have access to the stacks, trusted stacks, or register-save areas of the threads that
it manages. It may choose the next thread to run, but it cannot tamper with a thread’s state.

29



30 CHAPTER 3. RTOS IMPLEMENTATION

3.1 Per-thread state
Each thread has a stack (reachable from CSP) and a trusted stack. The trusted stack
maintains the state required for cross-domain calls. The same data structure also contains
the register save area, where the contents of the register file will be saved when an interrupt
is delivered.

A capability to the trusted stack and register save area for the running stack is stored
in the MScratchC register, which can be accessed only by code whose PCC has the
permission to access system registers.

3.2 The loader
The loader starts with access to the root capabilities and so has complete access to ev-
erything on start. The majority of the loader is written in C++ with rich types conveying
intentionality, including templates that provide capability permission sets as compile-time
constants that can be statically checked

The loader splits the architectural roots into four software-defined roots:

Executable capabilities are used for deriving capabilities that will end up installed in
PCC.

Global capabilities do not have permit-store-local and are used for deriving capabilities
for globals, heap memory, and so on.

Local capabilities do not have the global permission and are used only for stacks, trusted
stacks, and register save areas.

Sealing capabilities have no memory-related permissions and are used only for sealing
and unsealing.

Each capability that is derived from a root is derived via a mechanism that validates (at
compile time) that the requested permissions are less than the permissions of the root.

The C++ portion of the loader is stored in a portion of memory that will eventually
become the heap. Once it returns to a small assembly stub, this stub zeroes all of the
memory used by the loader (stack, code, and globals) and almost all of the register file,
ensuring that no capabilities are leaked. It then yields to the scheduler (via an ecall

instruction) and becomes a stackless idle thread.
The loader is responsible for initializing import tables (the capabilities that may point

outside of the compartment, see Chapter 5 for details), preparing each thread’s initial state,
and applying caprelocs (dynamically initialized capabilities stored in globals). For each
capreloc, the loader finds the compartment that it refers to and attempts to derive the target



3.3. INTERRUPT HANDLING 31

from the compartment’s PCC and CGP. If this fails, then the boot image is corrupted and
the loader resets (allowing a first-stage loader to perform A/B installations).

3.3 Interrupt handling

The interrupt handling code is part of the switcher and runs with permission to access
MScratchC. It first saves the register file in the current thread’s register save area and seals
the capability to this area. Next, it loads the other special-register values that describe the
interrupt and prepares a context invoking the scheduler.

The scheduler is always invoked with the same stack, with arguments containing a
sealed capability to the register-save area of the interrupted and yielding thread. It then
returns a sealed capability to a register-save area for a thread to resume. The scheduler
runs with interrupts disabled and provides a simple static priority scheduler with round-
robin scheduling within a priority level. Threads are run when no thread with a higher
priority is runnable. If two threads at the same priority level are runnable, one runs until it
either yields or an interrupt is delivered, then the next one runs.

3.4 Synchronization and scheduling primitives

The scheduler is a compartment and so can expose entry points that can be invoked via the
switcher. These include semaphore and message queue interfaces that will park a thread
(mark it as not runnable) until some event happens.

In addition, an MCall instruction will deliver an interrupt, causing the running thread
to immediately yield. This is used for an explicit yield operation that transfers control
immediately to the switcher and then to the scheduler. This mechanism can be used from
inside the scheduler itself to allow a thread to yield after the scheduler has updated some
data structures related to it.

In combination, these can be used to build synchronization primitives with timeouts.
A thread that wishes to block waiting for an event calls the scheduler, which then records
the conditions that will wake the thread (including the timeout) and yields via an MCall.
One resume, the scheduler can check how long it slept for and return from the cross-
compartment call.



32 CHAPTER 3. RTOS IMPLEMENTATION

3.5 The memory allocator
The memory allocator currently provides a simple malloc-like API. Future versions will
add explicit memory pinning (no concurrent deallocation of an object during a compart-
ment invocation) and explicit permission to deallocate objects.

In addition, the allocator provides a mechanism for allocating sealable objects. The
CHERIoT ISA has only a handful of sealing types and so it is not feasible for every com-
partment to be able to seal capabilities using the hardware mechanism. Instead, the mem-
ory allocator reserves one hardware sealing type for allocating sealable objects. A sealable
object has a header describing the capability that is used to unseal it. The allocator will
provide a sealed capability to the whole object (including the header) and, if invoked with
the correct unsealing capability) will return an unsealed capability to all of the object ex-
cept for the header.

This mechanism allows compartments to provide opaque data types to software run-
ning outside of the compartment.

3.6 Error handling
One effect of the CHERI architecture is to turn errors that could result in memory corrup-
tion vulnerabilities into traps. To mitigate the availability concerns this could create, the
CHERIoT RTOS provides a mechanism for recovering from faults in a controlled way.
Compartments can define an error handler that will be called if a fault occurs during ex-
ecution of that compartment, or if a fault in a called compartment results an ‘unwind’.
The error handler can inspect the saved register context from the time of the fault and
can choose either to resume execution with an amended register context or to unwind the
trusted stack, returning an error to the calling compartment.

Careful use of this mechanism can allow an application to continue even after it en-
counters an unexpected fault. For example, a compartment error handler might reset the
compartment state before returning an error to the calling compartment. For more details
of this mechanism and special security considerations please refer to the CHERIoT RTOS
documentation.

3.7 Other components
All other components, such as a network stack (taken from FreeRTOS), a TLS stack (from
mBedTLS), and so on are untrusted. They are treated no differently from any other user-
provided code and are packaged only for convenience. The bottom of the network stack



3.7. OTHER COMPONENTS 33

talks to a device driver, which is simply another compartment whose import table is used
to grant access to the MMIO region containing the network device’s control registers.



34 CHAPTER 3. RTOS IMPLEMENTATION



Chapter 4

C/C++ language and toolchain
extensions

In addition to the existing CHERI C/C++ extensions, we define a small number of addi-
tional extensions that are specific to CHERIoT. CHERI C is already able to compile most
existing embedded code that we have tried with no modifications. Embedded code has
to tolerate targets with Harvard architectures, different pointer sizes for different types of
data, different memory banks, and so on. In comparison, a CHERI target is far more like
a conventional ISA.

We have not had to change the CHERI C model at all for code running within a com-
partment. Our extensions are focused on supporting the compartmentalization model.

4.1 Specifying compartments

We have added an attribute to specify the compartment that implements a given function.
This is used in conjunction with the -cheri-compartment= flag passed to the compiler,
which specifies the compartment in which the current compilation unit will end up. The
compiler will raise an error if the compartment name for the current compilation unit does
not match the name of a function that has an implementation. For example, if a header file
contains the following declarations:

1 __attribute__((cheri_compartment("example"))) void foo(int);

2 __attribute__((cheri_compartment("other"))) void bar(void);

If foo is implemented then the compiler must be invoked with -cheri-compartment=example.
Any call to bar will then be treated as a cross-domain call.

35



36 CHAPTER 4. C/C++ LANGUAGE AND TOOLCHAIN EXTENSIONS

This mechanism allows lightweight annotations on functions that are exposed across
compilation units. Software that already supports a DLL-style linkage model may have
macros on public functions for using this. Other software can easily maintain these anno-
tations for CHERI targets with a macro that expands to nothing for non-CHERI targets.

Adding __attribute__((cheri_ccallback)) to a function marks it as a cross-compartment
callback. Taking the address of such a function will give a pointer that can be passed across
compartments and allow the recipient to recursively invoke this compartment.

4.2 Exposing library calls
Adding __attribute__((cheri_libcall)) to a function marks it as a library call. The
compiler will always generate an indirect call (via a sealing capability from the import
table) for all library functions, unless the callee and caller are in the same compilation unit
and have compatible interrupt states.

All of the functions that the compiler may insert calls to (such as memcpy,‘__cxa_guard_acquire
, and so on) are assumed to implicitly carry this attribute. The compiler must be able to
insert calls to these without knowing the name of the library that provides them and so this
attribute provides a single flat namespace for all such functions.

4.3 Controlling interrupt state
The cheri_interrupt_state attribute controls whether, during execution of the function,
interrupts are enabled, disabled, or in whatever state there were for the caller. It takes a
single argument, which must be either enabled, disabled, or inherited. The attribute can
also be written as a C+11 / C2x-style attribute. For example:

1 // This function runs with interrupts disabled

2 [[cheri::interrupt_state(disabled)]]

3 int disabled(void);

4 // This function runs with interrupts enabled

5 __attribute__((cheri_interrupt_state(enabled)))

6 int enabled(void);

7 // This function runs with whatever interrupt state the caller has.

8 __attribute__((cheri_interrupt_state(inherit)))

9 int inherit(void);

All functions that are not exposed across compartment boundaries (including library
calls) default to inherit. Cross-compartment calls default to enabled and must be set to
either enabled or disabled.



4.4. LINKING COMPARTMENTS 37

4.4 Linking compartments
The version of LLD used with CHERIoT provides a -compartment flag for linking com-
partments. This is somewhat similar to -r, which creates a relocatable object file. Linking
in this mode marks all symbols except for those in the export table as local. Unlike -r,
COMDATs are merged when linking a compartment. In other respects, this is identical to
-r: relocations are not processed and will be handled in the final link step.



38 CHAPTER 4. C/C++ LANGUAGE AND TOOLCHAIN EXTENSIONS



Chapter 5

ABI

CHERIoT is a hardware-software co-design project, where the ISA and ABI have been
carefully designed together to provide the desired compartment model and security guar-
antees.

5.1 Compartment layout
Each compartment has two reachable regions, bounded by PCC and CGP. The PCC
region contains the compartment’s code, read-only data, and import table. Read-only
data includes relocation read-only data, which is initialized by the loader at boot time. A
compartment’s import table is a read-only table containing capabilities that are used for
cross-compartment and cross-library calls, as well as any imported data.

A compartment also has an export table associated with it. The export table defines the
set of functions that are exported from the compartment (callable by others). This is read
by the compartment switcher (see Section 5.5).

Shared libraries are identical to compartments in structure, except that they lack a
CGP.

5.2 Access to globals
Read-only globals are accessed using PCC-relative addressing. CHERI RISC-V extends
the RISC-V auipc (add upper immediate to program counter) instruction to auipcc (add
upper immediate to program counter capability). This adds a 20-bit immediate, left shifted
by 12, to the current PCC value, giving an address that is within the immediate range of a
RISC-V load or store instruction of the target.

39



40 CHAPTER 5. ABI

Unfortunately, the result of the auipcc instruction may be out of the bounds of PCC.
This does not matter on CHERI systems with 128-bit capabilities because the encoding
guarantees that capabilities remain valid 4096 bytes out of bounds. However, this is not
the case with our 64-bit capability encoding that has much tighter ‘representable bounds’.
The tag bit is cleared if the capability is too far out of bounds, we must therefore modify
the standard CHERI-RISC-V relocation scheme to avoid taking capabilities out of bounds
in the middle of computing an address.

We are able to solve this problem by having at least a 1-bit overlap between the imme-
diate field of the loads and stores (or cincoffset instructions) and the aupicc. The auipcc

instruction and the second instruction must both displace the PCC in the same direction,
keeping the intermediate capability in bounds and hence representable. If the target ad-
dress is after the current instruction then both values must be positive, otherwise both
values must be negative, which is a simple property for the linker to ensure when apply-
ing the relocations. To make this possible we reduce the shift of auipcc by one, meaning
auipcc can always produce a value within the 2 KiB range required.1 This does limit the
maximum offset for a relocation to less than 231 but this is not a problem in practice due to
the limited size of compartments. Any system that needs more than 2 GiB compartments
would likely benefit from a 64-bit address space.

Accesses to read-write globals is very similar. The CGP register is biased by half
the size of the combined globals section (.data, .bss, and so on). This means that the
full immediate range is accessible for displacements. With a 12-bit immediate, a single
compartment can access 4 KiB of globals in a single load or store (or take their address
with a cincoffset instruction). We define a new instruction, auicgp, and a relocation type
that uses it to mirror the PCC-relative addressing mode.

We rely on linker relaxation to optimize both PCC relative and CGP relative relo-
cations. This means that relocations within ±2 KiB of PC or CGP require only one
instruction. Given the security incentive to keep compartments small we expect relaxation
to work well in the common case. In particular, if a compartment has more than 4 KiB
of mutable global state it may be advisable to split it into multiple compartments or use
dynamic allocation.



5.3. EXPORT TABLE LAYOUT 41

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PCC

CGP

error handler offset


header

entry point offset stack size #args ie id 0
...

entry point offset stack size #args ie id 0

 entries

Figure 5.1: Compartment export table layout

5.3 Export table layout

Figure 5.1 shows the layout of the export table for a compartment. Each export table starts
with a copy of the PCC and CGP for the target compartment. The next 32-bits is the offset
of the compartment’s error handler relative to PCC.base, or −1 if the compartment does
not have an error handler. If an error occurs the switcher may jump to this as described
in Section 3.6. After the header, the export table is comprised of one 32-bit entry per
exported function. The first 16 bits of each entry provide the displacement from the start
of the compartment’s PCC to the entry point. This limits a compartment to exporting
functions in the first 64 KiB of its code section. Most compartments have significantly
under 64 KiB of code, the few that are larger can sort their internal layout to ensure that
the exported functions all fit within the start.

The next 8 bits are the minimum amount of stack space that the function requires.
This allows compartments to be defensive against callers that try to invoke them without
enough stack space for their prologues. If a function requires more than 256 bytes of stack
space then it can add a dynamic check on the size of CSP after the compartment switch.

The final 8 bits are reserved for flags, described in the following table:

1An alternative solution would be to increase the size of the immediate on loads and stores. On RV32E
this could be achieved using the register selection bits that are freed by moving from 32 to 16 registers. Our
first prototypes did this but we choose to remain compatible with RV32I by modifying auipcc.



42 CHAPTER 5. ABI

Bits Meaning
0-2 Number of argument registers used.

3 Interrupts enabled
4 Interrupts disabled

The compartment switcher is responsible for clearing all registers except for the used
argument registers and so must know how many are used. The compiler fills in this set.
This provides a value from 0 (no arguments) to 7 (all six argument registers used, plus C5
carrying stack arguments.

Exports from compartments must set either the interrupts-enabled or interrupts-disabled
bit. Code running in a different security context always runs with an explicit interrupt
status, to make it easier to reason about compartment behavior. Functions exposed from
shared libraries may set neither, in which case the function will be invoked with the caller’s
interrupt status.

Each export table entry from a compartment is exposed as a symbol of the form __-

export_{compartment name}_{function name}. Each export table entry from a library
is exposed as a symbol of the form __library_export_{library name}_{function

name}. Libraries all use the same name in their export symbols because moving a func-
tion from one library to another does not involve running the target in a different security
context. The existence of multiple libraries is purely to improve auditing: libraries (their
entry points, called functions, and the contents of their code sections) can be individually
tracked, allowing code-signing rules to be driven by specific implementations of individ-
ual libraries. For example, code signing might require a specific FIPS-certified binary of
a crypto library, but allow the shared library providing memcpy to be replaced with a more
optimised version.

The function name in the export symbol is mangled according to the Itanium C++ ABI
rules. This provides some defense against accidental (non-malicious) type mismatches in
the caller and callee.

5.4 Import table layout
The import table is similar to a captable in structure. It is the only piece of state reach-
able from a compartment that is allowed to contain capabilities that point outside of the
compartment’s PCC and CGP on system start. This makes it a single place to audit the
compartment graph. The import table is mutable only by the loader. After the loader
finishes it is reachable only by the read-execute PCC for the compartment, not by any ca-
pabilities with store permission. Import table entries, at run time, are one of three things:

• Sealed capabilities to export table entries, used for cross-compartment calls.



5.5. CROSS-COMPARTMENT CALLS 43

• Sentry capabilities to library functions.
• Capabilities to memory-mapped I/O (MMIO) regions.

The loader is responsible for initializing these, based on information provided by the
compiler and linker. Prior to the loader running, import table entries for the first two
categories contain addresses of the corresponding export table entry. Import table entries
for MMIO regions contain the start address and the size of the region. This allows a
compartment to be granted a subset of an MMIO region, down to access to a single byte
(for example, allowing a compartment to poll the ‘ready’ status of a UART but requiring
that it performs a call to the compartment that owns the UART to read or write data with
it). A future version will allow read- or write-only access to MMIO regions.

The loader will populate the import table with capabilities. Each import table entry that
is used for cross-compartment calls will contain a sealed capability that has the bounds of
the target compartment’s export table and whose address points to the correct entry. This
allows the switcher to load the PCC and CGP values from the start and to jump to the
correct address.

The first entry in the import table has the (local) symbol name .compartment_switcher.
It is initialized to 0 at static link time and will be initialized by the loader with a sentry
capability for jumping to the compartment switcher.

5.5 Cross-compartment calls

Cross-compartment calls pass their arguments in the same registers as the RV32E ABI
(C10–C15). In addition, any stack arguments are passed via C5 (Ct0). The callee does
not have access to the caller’s stack other than via these arguments and so cannot use
CSP-relative addressing for on-stack arguments.

The capability loaded from the import table is passed to the switcher in C6 (Ct1). The
last step on the caller side is to jump to the sentry pointed to by the .compartment_switcher

symbol.
If a compartment calls a function that it also exports, and that function has the same

interrupt status as the caller, then the compiler may insert a direct call and skip the switcher.

5.6 Cross-library calls

Cross-library calls are simple indirect calls via a capability provided in the import table.
The import table entry contains a sentry capability to the target function. The CHERIoT



44 CHAPTER 5. ABI

ISA has sentries that enable, disable, or inherit the current interrupt status and so cross-
library calls can toggle or preserve the interrupt state. This makes it easy to reason about
the current interrupt state using structured programming idioms.

If a function explicitly changes interrupt state within a compartment then it will be
handled as if it were a library function exported from and consumed by the function. In
this case, the symbol in the export table will be local.

5.7 Callbacks

In some situations, one compartment wishes to provide a callback that another compart-
ment can invoke. In the CHERIoT ABI, this callback is represented as the same form of
sealed capability that would be loaded from the import table. Functions used as cross-
compartment callbacks are both exported and imported by the compartment that wishes to
take their address. Taking the address of such a function is simply a load from the import
table.

As with non-exported functions that change the interrupt status, the symbol in the
export table will be local if the function is not also exported as a directly callable function.

5.8 Relocations

The relocations added to RISC-V for CHERIoT ABI are listed in Table 5.1. As with
existing RISC-V, some of these are in two forms because RISC-V loads and stores place
their immediate operands in different locations. The relocation numbers here are the ones
used in the current prototype and are expected to change prior to standardization.

PCC or CGP relative relocations consist of a pair of either auipcc or auicgp plus a
12-bit immediate instruction. In most cases (when the offset is within ±2 KiB) linker
relaxation can reduce this to a single instruction for CGP-relative accesses. The AUICGP

instruction uses an entire major opcode and is rarely needed because it is uncommon for
a compartment to have more than 4 KiB of read-write global data (arguably a large glob-
als section is an indication that a compartment should be split or refactored). Therefore,
in future we could consider alternative relocations that don’t require auicgp, such as a
three instruction sequence consisting of lui, addi and cincaddr. This would require more
complex linker relaxations to retain good code size and efficiency and we have not yet
attempted it.

The same relocations are applied for both PCC and CGP relative accesses. The linker
is responsible for determining the target of the relocation and will rewrite auipcc or auicgp



5.8. RELOCATIONS 45

Relocation Value Meaning
CHERIOT_COMPARTMENT_HI 220 20-bit, 11-bit shifted PCC- or CGP-

relative displacement for use in auicgp or
auipcc.

CHERIOT_COMPARTMENT_LO_I 221 12-bit PCC- or CGP-relative displace-
ment for use in I-type instructions.

CHERIOT_COMPARTMENT_LO_S 222 12-bit PCC- or CGP-relative displace-
ment for use in S-type instructions.

CHERIOT_COMPARTMENT_SIZE 223 The size of the referenced symbol, ap-
plied to a CSetBounds instruction.

Table 5.1: The relocations defined for the CHERIoT ABI

to the correct instruction depending on the target and update the offset depending on the
kind of target.



46 CHAPTER 5. ABI



Chapter 6

Known caveats

There are a small number of known caveats for developers attempting to secure a com-
partment. Future iterations may have compiler mitigations for some of these.

6.1 Shared stacks

Compartments invoked by the same thread all use the same stack. This is important for
embedded systems. Embedded stacks are often on the order of 1 KiB in size and so
requiring a separate stack segment for every thread and compartment pair would quickly
exhaust memory. This sharing provides one useful tool for an attacker: The caller has
access to all of the callee’s stack prior to a call.

A malicious compartment may construct a capability to a currently-unused part of the
stack, which will become the callee’s stack. It cannot stash these on the heap or in globals
but it can then pass these as arguments. The compartment switcher will check that these
are not passed as direct arguments but a compartment may load a capability and corrupt
its own state. For example, consider the following interface:

1 struct A

2 {

3 char *outBuffer;

4 size_t length;

5 };

6 __attribute__((cheri_compartment("victim")))

7 void copyOutSomething(const struct A *out);

This API takes a structure containing a pointer to a buffer and a length and is expected
to write something via this pointer. If the attacker sets up the outBuffer field to point to

47



48 CHAPTER 6. KNOWN CAVEATS

something on the victim’s stack, then the victim may corrupt its own stack. The victim
must check this. The check_pointer function from cheri.hh validates that pointers do not
do this. This function takes a set of permissions that the capability must have and a size
(optionally: if unspecified it assumes that the pointer must be big enough for one instance
of pointee type) and returns true only if the pointer is not on the current compartment’s
stack, is tagged, unsealed, and has sufficient permissions.

The following snippet is taken from the implementation of one of the scheduler func-
tions.

1 if (!check_pointer<PermissionSet{Permission::Store,

2 Permission::LoadStoreCapability}>(ret))

3 {

4 return -EINVAL;

5 }

This ensures that the void **ret argument can be used to store a capability. If this is
not the case, the function returns early.

6.2 Explicit leakage
Passing a pointer to a cross-compartment function call at the C level grants the callee ac-
cess to the pointee data. Similarly, returning a pointer from a cross-compartment function
call grants the caller access to the pointee. The ISA provides several tools for restricting
this:

Sealing allows pointers to be made unusable by anyone who lacks the matching permit-
unseal capability and unforgeable by anyone who lacks the matching permit-seal
capability.

Deep immutability (the permit-load-mutable permission) provides a mechanism for pass-
ing data structures between compartments that prevents the recipient from mutating
any objects reached via the initial pointer.

Local capabilities (shallowly local, or deeply local capabilities that lack the permit-load-
global permission) provide a mechanism to prevent the callee (including any indirect
callee) from capturing a pointer.

These tools provide a security benefit only if they are used. It is good practice for any
compartment-owned data that is returned to a caller to be sealed. For example, a network
stack returning a connection context should return a sealed capability. As a rule of thumb,
if you are not writing code that is correct in the presence of every possible bit pattern for a



6.3. AVAILABILITY 49

data structure then pointers to that data structure that are shared outside of a compartment
should be sealed.

Any pointer that is const should be marked as deeply immutable. This is not done
automatically because C and C++ both allow the const qualifier to be cast away. Any
pointer-typed function argument pointer that is not expected to be captured by the callee
should be marked as local.

Future versions of the compiler will provide declarative annotations that implicitly
drop these permissions in the caller.

6.3 Availability
In some embedded systems (most control systems), availability is a critical part of the
TCB. In such systems, an attacker who can prevent the system from responding can do
real-world damage. For example, preventing the brake-control system from engaging the
brakes in response to a signal or preventing an emergency cut-out from being delivered
can cause injury or loss of life.

In such systems, the scheduler becomes part of the TCB. The scheduler is not trusted
for confidentiality or integrity and has a limited interface to the rest of the TCB and so can
potentially be replaced by something simpler for these use cases (or something formally
verified to ensure that the highest-priority thread will be scheduled in a timely fashion).

Similarly, any lower-priority thread that can reach a compartment that can invoke an
interrupts-disabled function is part of the TCB for availability. It is important to carefully
audit all such paths to ensure that they will not prevent interrupt delivery for long enough
to violate hard realtime guarantees.



50 CHAPTER 6. KNOWN CAVEATS



Part II

Architecture specification

51





Chapter 7

The CHERIoT ISA

The CHERIoT ISA extends RV32 [20] with CHERI [22] memory safety features. It is
designed to be a very minimal subset of RISC-V and CHERI that supports strong spatial
and temporal memory safety, and compartmentalization. This is intended to be a concise
description of the architecture and currently assumes some familiarity with both CHERI
and RISC-V.

7.1 Starting subset of RV32
The CHERIoT ISA is based on a minimal subset of RV32 supporting machine mode only
(i.e. no virtual memory). The C instruction compression extension is required (with minor
modifications) and always enabled in the misa CSR. PMP support is optional, although we
anticipate that it will not add value owing to the strong protections already offered by the
CHERIoT ISA and RTOS combination. Floating point is optional and may conflict with
some encoding choices for compressed instructions.

7.2 Omitted CHERI features
Those familiar with CHERI-RISC-V will note that some features are omitted to simplify
the architecture at the cost of a little flexibility and backwards compatibility. In partic-
ular, CHERI hybrid mode is not supported, so there is no need for DDC or a cap mode
bit in PCC. Instead all code runs in pure-cap mode, where existing instructions use capa-
bilities for address operands. Offset addressing is also eliminated, so the CGetOffset and
CSetOffset instructions are not present and special capabilities registers (including PCC)
are always interpreted simply as their address, rather than as an offset relative to the base

53



54 CHAPTER 7. THE CHERIOT ISA

as in CHERI-RISC-V. This allows us to drop checks for the alignment of the base of exe-
cutable capabilities as there is no possibility of confusion arising from an unaligned base,
as there is in hybrid mode CHERI-RISC-V.

7.3 Changes to register file
The 16 32-bit integer registers from RV32 are extended into 65-bit capabilities (64-bits +
tag). Abstractly, capabilities have the following fields:

address A 32-bit address or integer value.
base The 32-bit inclusive lower bound.
top The 32-bit exclusive upper bound.
perms The capability permissions (Section 7.13.1).
otype Used for sealing (Section 7.13.2).
tag A single bit indicating valid or invalid. Capabilities with this bit set are called tagged.

The actual capability encoding is compressed as described in Section 7.13. Instructions
that read integer operands use only the lower 32-bits (the capability address). Instructions
that produce integers write a NULL capability (Section 7.13.6) with the address set to
the integer result. In assembly the capability registers are referred to as $c0..$c15, with
$x0..$x15 referring to their address parts. At reset the registers are initialized to the NULL
capability.

7.4 Instruction encodings
As described in Chapter 8 the new capability instructions use major opcode 0x5b and the
standard I-type and R-type formats. Additionally AUICGP uses major opcode 0x7b.

7.5 Changes to instruction fetch / control flow
The program counter is extended to a capability, PCC, with PCC.address assuming the
role of the PC. If PCC becomes untagged or the instruction is not entirely within the
bounds of PCC, then an exception is raised. Note that the bounds check must take ac-
count of whether the fetched instruction is 2 or 4 bytes. If the program counter is outside
the bounds of PCC it might be unrepresentable in the compressed capability format (Sec-
tions 7.13.3 and 7.13.5). Therefore, to avoid violating capability monotonicity the value
written to MEPCC when there is an instruction fetch bounds violation has its tag cleared.



7.6. CHANGES TO MEMORY ACCESSES 55

Due to unrepresentability the bounds of MEPCC might not correspond to the bounds of
PCC at the time of the exception in this case.

CJALR replaces the JALR instruction and uses capabilities for the target and link register.
It checks that the target capability is tagged and executable before it is installed in PCC.
If the target is sealed with one of the reserved ‘sentry’ types then it is unsealed before
jumping to it, while possibly writing mstatus.MIE (see Section 7.13.2). If it is sealed with
a non-sentry type an exception is raised.

The link register written by CJAL and CJALR is sealed as a sentry of the type correspond-
ing to the current value of mstatus.MIE.

The checks on CJALR and special capability writes (Section 7.10) prevent execution
with a PCC that is sealed or lacks PERMIT_EXECUTE. The only ways for PCC to become
untagged is by MRET with an untagged MEPCC or exception with untagged MTCC. The
latter will result in an unrecoverable exception loop.

7.6 Changes to memory accesses
All existing load and store instructions are modified to take a capability for the base ad-
dress. The address of the capability is used as the base address for the memory operation
and an exception is raised if the capability:

• has the tag unset
• is sealed
• does not have the appropriate memory permissions (Section 7.13.1)
• has bounds that do not cover the entire region being accessed

7.7 Tagged memory
Memory is extended with a single tag bit for each capability sized and aligned memory
location. The new capability load and store instructions, CLC and CSC, transfer a capability-
sized-and-aligned region of memory to or from a register, including the tag bit. The tag
bits are not accessible directly and may be set to one only by a store of a tagged capability
using CSC. To prevent tampering with valid capabilities in memory, non-capability stores
(e.g. CSW) clear the tag bits for the capability-aligned region(s) they touch. If an unaligned
store crosses a capability alignment boundary then two tag bits need to be cleared.

The platform must define which regions of memory support capability tags. In memory
without tag support capability stores will silently drop the tag, and capability loads will
always return untagged values. The value of the tag bits is undefined at reset, so software



56 CHAPTER 7. THE CHERIOT ISA

should take care to zero all memory on start up unless running on a platform that defines
them to be zero.

7.8 Temporal safety
In addition to the capability tag bits there is a revocation bit for each revocation granule
(currently the same size as a capability, 8 bytes). After loading a capability with the tag
set, the CLC instruction loads the revocation bit corresponding to the base address of the
capability (N.B. not the address). If the granule’s revocation bit is set then the capability’s
tag is cleared before writing it to the destination register. The revocation bits are memory
mapped so that they can be manipulated by the allocator. The platform defines the location
of revocation bits in the address space and their mapping to addresses. Not all mapped
addresses need have corresponding revocation bits: capabilities whose base points to a
region of address space without corresponding revocation bits will not be revoked by CLC.
It is the responsibility of software to allocate capabilities in regions with revocation bits
when support for revocation is desired.

A typical implementation is expected to exclude all of the MMIO space from the re-
vocation bitmap. In addition, an implementation with multiple SRAM banks may support
revocation only for some granules. Memory used for code and globals will never be re-
voked (in the software model) and so may be excluded. An implementation may also
provide a configuration interface that allows software to specify the range of heap mem-
ory and avoid the cost of the load barrier on globals.

The base of sealing capabilities (see Figure 7.4) refers to a distinct namespace to that
of memory capabilities, therefore they are not revoked using this mechanism. Software
should take care not to reallocate sealing capabilities unless there is some other mechanism
to revoke previously issued ones. Given the 232 sized space for sealing capabilities we
expect most applications will never have to reallocate them.

Like the capability tag bits, the value of the revocation bits in memory is undefined on
reset unless defined by the platform.

7.9 Controlling access to system registers
In the absence of supervisor or user modes, it is useful to be able to restrict access to sensi-
tive control and status registers (CSRs) and special capability registers (SCRs). The PER-
MIT_ACCESS_SYSTEM_REGISTERS permission on executable capabilities can be used to
enable or disable access to certain special registers. If PERMIT_ACCESS_SYSTEM_REGIS-
TERS is set on the current PCC then access to all registers is permitted, otherwise attempt-



7.10. SPECIAL CAPABILITY REGISTERS 57

ing to access restricted registers or execute MRET will cause a PERMIT_ACCESS_SYSTEM_-
REGISTERS exception. Table 7.1 shows the allowlist of CSRs that can be accessed without
PERMIT_ACCESS_SYSTEM_REGISTERS. Similarly Table 7.2 lists the access requirements
for special capability registers.

CSR Read/Write
cycle(h) Read-Only
time(h) Read-Only

instret(h) Read-Only
hmpcounter(h) Read-Only

fflags Read-Write
frm Read-Write
fcsr Read-Write

Table 7.1: CSR allowlist. The accesses shown are the only CSR accesses that are per-
mitted when the installed PCC does not have the PERMIT_ACCESS_SYSTEM_REGISTERS

permission bit set.

7.10 Special capability registers
Special Capability Registers (SCRs) are similar to RISC-V’s Control and Status Registers
(CSRs) except that they contain capabilities rather than integers. They are accessed via
a new instruction, CSpecialRW, which behaves similarly to the RISC-V CSRRW instruction.
CSpecialRW requires that PCC has PERMIT_ACCESS_SYSTEM_REGISTERS, otherwise it will
raise an exception.

Table 7.2 lists the SCRs and their properties: Reset indicates the reset value as one of
the capability roots defined in Section 7.13.

Register Reset Replaces

28 Machine trap code capability (MTCC) ⊤X mtvec

29 Machine trap data capability (MTDC) ⊤M -
30 Machine scratch capability (MScratchC) ⊤S -
31 Machine exception PC capability (MEPCC) ⊤X mepc

Table 7.2: Special Capability Registers (SCRs)



58 CHAPTER 7. THE CHERIOT ISA

The MTCC and MEPCC SCRs replace existing RISC-V CSRs mtvec and mepcc re-
spectively. Attempting to access the legacy RISC-V CSR via the CSR* instructions results
in a Reserved Instruction exception. The special meaning associated with the CSR applies
to the SCR’s address field and the value written is validated and legalized as follows:

MTCC Only direct mode is supported (not vectored). If either of the two least significant
bits of the address is set then they are cleared and the tag of the value written is
cleared. If the capability being written is sealed or does not have PERMIT_EXECUTE

then its tag is cleared.
MEPCC If the least significant bit of address is set then it is cleared and the tag is cleared.

If the capability being written is sealed or does not have PERMIT_EXECUTE then its
tag is cleared.

These rules avoid potential problems due to legalisation where capabilities might be-
come unrepresentable or sealed capabilities modified.

7.11 Changes to exception handling
Exception handling is the same as RISC-V except that mtvec and mepc are replaced by
their equivalent SCRs.

When taking an exception the current PCC, with the address set to that of the trapping
instruction, is placed in MEPCC. If the exception is a bounds violation on instruction
fetch then the tag on MEPCC is cleared. MTCC is then installed in PCC and execution
proceeds from MTCC.address. When executing an MRET instruction MEPCC is moved
to PCC and execution proceeds from MEPCC.address.

In either case if the new PCC is untagged (due to an untagged MEPCC or MTCC)
a CHERI tag violation exception is raised for the new PC. In the case of an untagged
MTCC this will result in an unrecoverable exception loop.

A new RISC-V exception code, 0x1C, is used for all CHERI specific exceptions, with
a more detailed CHERI cause placed in mtval as shown in Figure 7.1.

0451031

WPRI S cap idx cause

Figure 7.1: mtval register format for Capability Exception

cause The cause field reports the capability exception code as described in Table 7.3.



7.12. THE AUIPC AND AUICGP INSTRUCTIONS 59

Value Description

0x00 None
0x01 Bounds Violation
0x02 Tag Violation
0x03 Seal Violation
0x11 PERMIT_EXECUTE Violation
0x12 PERMIT_LOAD Violation
0x13 PERMIT_STORE Violation
0x15 PERMIT_STORE_CAPABILITY Violation
0x18 PERMIT_ACCESS_SYSTEM_REGISTERS Violation

Table 7.3: Capability Exception Codes. All unused codes are reserved.

cap idx The cap idx field reports the index of the capability register that caused the last
exception. When the S bit is zero, it is the number of the general purpose register
that caused the capability fault. Otherwise, it is the number of a special purpose
capability register given in Table 7.2 or zero if the fault was caused by PCC.

7.12 The AUIPC and AUICGP instructions

The RISC-V AUIPC instruction becomes AUIPCC, which generates a capability derived from
PCC by incrementing the address by the 20-bit signed immediate left shifted by 11. Note
that this shift is reduced by one compared to the AUIPC as this allows relocations that com-
bine AUIPCC with a 12-bit immediate instruction to always have immediates with matching
signs. This is necessary to ensure any intermediate capabilities created are in-bounds oth-
erwise there is a risk they could be unrepresentable. This does limit the maximum range
of such relocations, but given our compartmentalization model and expected memory lim-
itations this is not a problem in practice.

Additionally, we use major opcode 0x7b to encode AUICGP, which is similar to AUIPCC

except that the immediate is added to capability register $c3 (the global pointer in the
ABI).



60 CHAPTER 7. THE CHERIOT ISA

08917182122242531

R p’6 otype’3 E’4 T’9 B’9

a’32

R a reserved bit. This is zero in the root capabilities (and hence all tagged capabilities),
but may be set if untagged data is loaded into a register. In this case its value must be
preserved. This is important because memory copies are performed with capability
load and store instructions in order to preserve the tag on any capabilities present,
meaning these instructions must also faithfully copy arbitrary untagged data.

p a 6-bit compressed permissions field (see Section 7.13.1)
otype a 3-bit ‘object type’ used for sealing capabilities (see Section 7.13.2)
E a 4-bit exponent used for the bounds encoding (see Section 7.13.3)
T a 9-bit top used in the bounds encoding (see Section 7.13.3)
B a 9-bit base used for the bounds encoding (see Section 7.13.3)
a the 32-bit address of the capability

Figure 7.2: Capability format
01234567891011

U0 SE US EX SR MC LD SL LM SD LG GL

Figure 7.3: Architectural permissions

7.13 Capability encoding
Figure 7.2 shows the 64-bit encoding of capabilities which is described in detail in the
following sections.

7.13.1 Capability permissions
Figure 7.3 shows the architectural permissions as used by CGetPerm and CAndPerm. They
have the following meanings:

EX If PERMIT_EXECUTE is set then this capability is executable and can be used as the
target of CJALR and in other contexts requiring an executable capability, such as TCC.

SR PERMIT_ACCESS_SYSTEM_REGISTERS may be set on executable capabilities. When
set in PCC access to all CSRs and SCRs is permitted, otherwise attempts to access



7.13. CAPABILITY ENCODING 61

restricted registers or execute an MRET results in an exception (See Section 7.9).
SE If PERMIT_SEAL is set then this capability may be used as the authority for CSeal.
US If PERMIT_UNSEAL is set then this capability may be used as the authority for CUnseal.
U0 USER_PERM0 is a user permission on capabilities with the sealing format. It has no

special meaning to hardware but behaves like other permissions in that it may be
cleared by CAndPerm and cannot be set after being cleared. It is intended to be used
as a software defined permission.

GL If GLOBAL is set then this capability is global and can be stored anywhere, otherwise
it is local and may be stored only via capabilities with the PERMIT_STORE_LOCAL_-
CAPABILITY permission.

SL If PERMIT_STORE_LOCAL_CAPABILITY is set (along with PERMIT_STORE and PER-
MIT_LOAD_STORE_CAPABILITY) then any capability may be stored via this capabil-
ity. Otherwise, attempting to store a local capability (with GL unset) or a backwards
sentry (see Section 7.13.2) will store the capability with the tag cleared.

LM If PERMIT_LOAD_MUTABLE is not set then any tagged capabilities loaded via this
capability will have SD and LM cleared. Thus, if SD and LM are cleared on a
capability then it, and any capability loaded via it (including via indirection), will
be read-only. This is useful for delegating a read-only pointer to a data structure, for
example to enforce a language level transitive const. Untagged or sealed capabilities
that are loaded are unaffected and retain their existing SD and LM bits.

LG If PERMIT_LOAD_GLOBAL is not set then any tagged capabilities loaded via this capa-
bility will have LG and GL cleared. Thus, if LG and GL are cleared before delegat-
ing a capability then it, and any capability loaded via it (including via indirection),
may be stored only via capabilities with PERMIT_STORE_LOCAL_CAPABILITY. This
limits the ability of the delegee to retain capabilities to a delegated data structure or
part thereof, making it easier to later revoke access to the delegated data structure. In
the case of loaded sealed capabilities, GL, but not LG, is cleared, making this an ex-
ception to the immutability of sealed capabilities. Thus, a sealed capability reached
via an authority lacking LG may be stored only through a PERMIT_STORE_LOCAL_-
CAPABILITY authority, as may its unsealed form, but the further authority borne by
the sealed capability once unsealed is unaltered. This differs from the behavior of
LM on sealed capabilities. Untagged capabilities are unaffected.

MC If PERMIT_LOAD_STORE_CAPABILITY is set then the load and store permissions for
this capability are modified to enable capability loads (PERMIT_LOAD_CAPABILITY)
and / or stores (PERMIT_STORE_CAPABILITY). The CLC instruction logically ANDs
the tag of the loaded capability with MC from the capability base operand, so only
capabilities with MC and LD set can be used to load tagged capabilities. The CSC

instruction raises an exception if the stored capability has the tag set and the capa-



62 CHAPTER 7. THE CHERIOT ISA

bility base operand lacks either MC or SD permission, so only capabilities with MC
and SD can be used to store tagged capabilities.

SD If PERMIT_STORE is set then this capability can be used as the base operand for stores,
otherwise an exception is thrown.

LD If PERMIT_LOAD is set then this capability can be used as the base operand for loads,
otherwise an exception is thrown.

Some combinations of permissions are not very useful (e.g. PERMIT_ACCESS_SYS-
TEM_REGISTERS but not PERMIT_EXECUTE), so permissions are stored in a compressed
format that restricts the available combinations. Figure 7.4 shows the different formats of
the compressed permission field. Each format has some fixed bits (shown as 0s or 1s) that
unambiguously identify the format. A given format unconditionally grants some number
of ‘implicit’ permissions and the non-fixed bits encode the presence or absence of the
permissions indicated by the two-letter abbreviation.

For example the ‘cap-read-write’ format has bits 3 and 4 of the permissions field set to
one. Capabilities with this format implicitly have PERMIT_LOAD, PERMIT_LOAD_STORE_-
CAPABILITY and PERMIT_STORE while bits 0, 1, 2 and 5 encode PERMIT_LOAD_GLOBAL,
PERMIT_LOAD_MUTABLE, PERMIT_STORE_LOCAL_CAPABILITY and GLOBAL respectively
(the permission is granted if the bit set to one). The logic of this is that each format need
only encode permissions that make sense given the set of implicitly present permissions,
giving a dense encoding of useful permission encodings. The format used to represent a
capability may change if permissions are cleared by CAndPerm or CLC. Figure 7.5 shows a
graphical representation of the possible permissions combinations and possible transitions
between them.

One consequence of this encoding is that is not possible to have a single capability
with all permissions. Instead there are three capability roots corresponding to the three
nodes with no edges leading to them in Figure 7.5. We label these as follows:

⊤M The memory root, with GLOBAL, PERMIT_LOAD, PERMIT_STORE, PERMIT_LOAD_-
STORE_CAPABILITY, PERMIT_STORE_LOCAL_CAPABILITY, PERMIT_LOAD_GLOBAL

and PERMIT_LOAD_MUTABLE. The bounds are the entire address space.
⊤X The executable root, with GLOBAL, PERMIT_EXECUTE, PERMIT_LOAD, PERMIT_LOAD_-

CAPABILITY, PERMIT_LOAD_GLOBAL, PERMIT_LOAD_MUTABLE and PERMIT_AC-
CESS_SYSTEM_REGISTERS. The bounds are the entire address space.

⊤S the sealing root, with GLOBAL, PERMIT_SEAL, PERMIT_UNSEAL, and USER_PERM0.
The bounds are the entire address space even though only a limited set of otype
values can be used with CSeal. This allows sealed, sealing-format capabilities with
an address outside the range of valid otypes to be used as unforgeable tokens by
software.



7.13. CAPABILITY ENCODING 63

012345

GL 1 1 SL LM LGMemory cap-read-write: Implicit: LD, MC, SD

GL 1 0 1 LM LGMemory cap-read-only: Implicit: LD, MC

GL 1 0 0 0 0Memory cap-write-only: Implicit: SD, MC

GL 1 0 0 LD SDMemory data-only: Implicit: None

GL 0 1 SR LM LGExecutable: Implicit: EX, LD, MC

GL 0 0 U0 SE USSealing: Implicit: None

Figure 7.4: Compressed permission formats

On reset the SCRs are initialized to the different capability roots as shown in Table 7.2.
PCC is initialized to ⊤X .

See Appendix C for a description of the constraints on useful permission combinations
that led to the encoding scheme.



sealing

mem-rw

mem-cap-wo

mem-cap-ro

mem-cap-rw exe

0

U0

U0

SE

SE

US

US

SE_U0

SEU0

U0_US

USU0

SE_US

US SE

SE_U0_US

⊤S

US SEU0

MC_SD

SD

MC

SD

LD

LD

LD_SD

LD SD

LD_MC

MC

LD_LG_MC

LG

LD_LM_MC

LM

LD_LG_LM_MC

LM LG

LD_MC_SD

LD MC SD

LD_LG_MC_SD

SD

LG

LD_LM_MC_SD

SD

LM

LD_MC_SD_SL

SL

LD_LG_LM_MC_SD

SD

LM LG

LD_LG_MC_SD_SL

SLLG

LD_LM_MC_SD_SL

SLLM

LD_LG_LM_MC_SD_SL

⊤M

SLLM LG

EX_LD_MC

EX

EX_LD_LG_MC

EX

LG

EX_LD_LM_MC

EX

LM

EX_LD_LG_LM_MC

EX

LM LG

EX_LD_MC_SR

SR

EX_LD_LG_MC_SR

SR LG

EX_LD_LM_MC_SR

SR LM

EX_LD_LG_LM_MC_SR

⊤X

SR LM LG

Figure 7.5: Graph of allowed permission combinations, grouped by encoding format and ordered by inclusion. Edges are labelled with the permission that is
dropped by that transition. Edges implied by transitivity are omitted. GLOBAL is omitted because it is entirely orthogonal.



7.13. CAPABILITY ENCODING 65

CAndPerm operates on the decompressed permissions so it is possible to request combi-
nations that cannot be represented in the compressed encoding (for example PERMIT_EX-
ECUTE but not PERMIT_LOAD). In that case the resulting capability will have a (possibly
empty) subset of the requested permissions. The following procedure is used to encode a
given set of requested permissions:

1. If the permissions include EX, LD and MC then encode SR, LM and LG using the
executable format.

2. Otherwise, if the permissions include LD, MC and SD then encode SL, LM and LG
using the cap-read-write format.

3. Otherwise, if the permissions include LD and MC then encode LM and LG using
the cap-read-only format.

4. Otherwise, if the permissions include SD and MC then encode using the cap-write-
only format.

5. Otherwise, if the permissions include LD or SD then encode using the data-only
format.

6. Otherwise, encode U0, SE and US using the sealing format.

Any permissions that cannot be encoded using the chosen format are dropped. The pos-
sible clearing of GL and LG or SD and LM during capability loads can be quite easily
performed on the compressed format although note that clearing SD may require switch-
ing format and that SL may be cleared as a side-effect.

Note that this legalization of permissions must happen at all points where permissions
can change (CAndPerm and CLC). For example, the result of CAndPerm followed by CGetPerm

should be consistent regardless of whether the register file stores the permissions in the
compressed or decompressed form. Similarly, storing then loading a capability should not
change the permissions except possibly GL, LG, LM and SD as specified by CLC.

7.13.2 Sealed capabilities
The otype field is used for sealing capabilities. A sealed capability cannot be modified
or used as authority for operations except special unsealing ones, but can be passed as a
token and later unsealed. Two kinds of sealing are supported:

Using otypes: CSeal allows the creation of sealed capabilities with a given value of otype
given a capability to seal and an authorizing capability with PERMIT_SEAL and the
address set to the desired otype. CUnseal permits unsealing a sealed capability if
provided with a capability with PERMIT_UNSEAL and bounds that contain the otype
of the capability to be unsealed.



66 CHAPTER 7. THE CHERIOT ISA

Sealed entry capabilities (sentries): Executable capabilities sealed with the special sen-
try otypes can be used with CJALR. The capability is unsealed before jumping to it,
creating a form of call gate. Three kinds of sentry are defined that affect mstatus.
MIE in different ways: either leaving it unchanged, enabling interrupts or disabling
interrupts. Jumping to an interrupt enabling or disabling sentry will set or clear
mstatus.MIE accordingly. Additionally, the link register stored by CJAL and CJALR

is sealed as a sentry with the current interrupt status: if MIE is set it will produce
an interrupt enabling sentry and if it is cleared it will produce an interrupt disabling
sentry.

The otype field uses the following values:

0 unsealed
1 sealed as sentry
2 sealed as interrupt disabling sentry
3 sealed as interrupt enabling sentry
4 sealed as backward interrupt disabling sentry
5 sealed as backward interrupt enabling sentry
6-7 executable capability sealed with given otype
8 reserved (due to encoding)
9-15 non-executable capability sealed with given otype

The otypes 1−7 can only be applied to executable capabilities, while memory and sealing
format capabilities can only be sealed with otypes 9− 15. If the otype field of a memory
or sealing format capability is non-zero then bit 3 is implicitly set i.e. otypes 9 − 15 are
encoded using values 1− 7. An attempt to use CSeal or CUnseal with a reserved otype, or
with an otype not applicable to the capability format, will clear the capability tag.

Because CHERIoT allows manipulating the status of the interrupt through a function
call (and function return) by encoding the interrupt type in the otype, the following attack
can occur: A caller calling an interrupt-disabling callee can set the return sentry of the
callee to the same callee. This means, the callee will call itself on return all the while
operating with interrupts disabled. This will lead to infinite repeated calls to the callee
with interrupts disabled, violating availability. This attack can be prevented in CHERIoT
by adding two new “backwards-edge” sentries and adding more checks on CJALR, i.e. only
the following combinations are allowed in CJALR:

cs1 cd Used for Valid otypes
$cra $cnull Function return Return sentries (4, 5)

̸= $cra $cnull Tail call Unsealed or interrupt inheriting forward sentry (0, 1)
any ̸∈ {$cnull, $cra} Function call Unsealed or interrupt inheriting forward sentry (0, 1)
any $cra Function call Unsealed or forward sentries (0, 1, 2, 3)



7.13. CAPABILITY ENCODING 67

As an additional special case, CSC will require an authority with PERMIT_STORE_LO-
CAL_CAPABILITY to store a backwards sentry (that is, a capability sealed with type 4 or 5).
This allows the RTOS to confine backward sentries to stacks and register store areas.

7.13.3 Capability bounds
The capability bounds (base and top) are stored in a compressed format relative to the
address, similar to CHERI Concentrate [23]. The floating point encoding stores 2e-aligned
bounds, where e is the exponent. An exponent of zero can express bounds with byte
precision but limits the maximum length of the range to 511 bytes. Larger exponent values
can represent larger ranges, but require more aligned bounds.

To form the base and top the 9-bit B and T fields from the encoding are inserted into
the address at bit e as follows:

address, a = atop = a[31 : e+ 9] amid = a[e+ 8 : e] alow = a[e− 1 : 0]

base, b = atop + cb B 0

top, t = atop + ct T 0

Where the top bits of the address are ‘corrected’ according to the following formulae:

cb =

{
−1, if amid < B

0, otherwise
ct =


−1, if amid < B and T ≥ B

1, if amid ≥ B and T < B

0, otherwise

These corrections ensure that the decoded bounds remain the same provided the ad-
dress is in [b, b + 2e+9), the so-called representable range. They work by testing for con-
ditions that indicate whether the top and address are in the same 2e+9 aligned region as
base. The representable range spans two such regions (one if B = 0), which we will call
the lower and upper regions, with b always lying in the lower region. The ISA is con-
structed to ensure that, for valid capabilities, a and t are in the representable range and
b ≤ t. Therefore if amid < B then a must be in the upper region, where the atop bits are
one greater than those bits in b. Similarly if T < B then t must lie in the upper region and
we can compute the necessary correction based on whether a also lies in the upper region.
To maintain the necessary invariant for this to work CSetAddr and CIncAddr clear the tag if
the address to goes outside the representable range (see Section 7.13.5).

In order to permit the format to represent a range covering the entire address space
using only a 4-bit exponent there is a special case when E has its maximum value. The
effective exponent, e, is defined as:



68 CHAPTER 7. THE CHERIOT ISA

e alignment, 2e maximum length, 511× 2e

0 1 511
1 2 1,022
2 4 2,044
3 8 4,088
4 16 8,176
5 32 16,352
6 64 32,704
7 128 65,408
8 256 130,816
9 512 261,632
10 1,024 523,264
11 2,048 1,046,528
12 4,096 2,093,056
13 8,192 4,186,112
14 16,384 8,372,224
24 16,777,216 8,573,157,376

Table 7.4: Capability bounds alignment and maximum length by exponent value. Note
that for e = 24 the maximum length exceeds the size of the address space. The length of
the root capabilities is 232 = 4, 294, 967, 296 so no valid capability will ever exceed this
length.

e =

{
24, if E = 15

E, otherwise

Thus the root memory capability has B = 0, T = 0x100, E = 15 and decodes to the
range [0, 232). Note that the decoded top is actually a 33-bit value to accommodate this.

7.13.4 Set bounds operation

The CSetBounds instruction must select values for E, B, and T that encode a requested
range defined by a given base, b, and length, l. In the case that the requested range is
not precisely representable base is rounded down and top up to multiples of 2e, where
e is the chosen exponent. For maximum bounds precision, we desire the smallest e that
can represent the requested region. From the encoding we can observe that the largest
encodable length for a given e is given by 2e × (29 − 1). Therefore we require a solution



7.13. CAPABILITY ENCODING 69

to the inequality:

l ≤ 2e × (29 − 1)
l ≤ 2e+9 − 2e

l ≤ 2e+9 approximation
log2 l ≤ e+ 9

⌊log2 l⌋ ≤ e+ 9 approximation
msb(l) ≤ e+ 9 index of most significant set bit is floor of log2

32− clz(l) ≤ e+ 9 also expressible as count leading zeros for 32-bit length
23− clz(l) ≤ e

e = 23− clz(l) since we require the smallest e

Since e must be greater than or equal to zero the count leading zeros should be limited
to the top 23 bits of l (lengths smaller than 9-bits are expressed with e = 0). Since
the exponent is limited to 4-bits, exponents greater than 14 are mapped to the special
maximum exponent, 24, which is encoded as 15:

e′ =

{
e, if e ≤ 14

24, otherwise

Having chosen the exponent, the relevant bits of base and top, t = b+ l, are extracted:

B = b[e′ + 9 : e′] T = t[e′ + 9 : e′]

The bounds are exact if the bits below e′ in both b and t are all zero. By discarding the
lower bits of b the base is automatically rounded down to a representable value, but if the
top is not exact then we must round it up by incrementing by one to ensure the encoded
range includes the requested top. Note that the calculated e′ was based on the requested
length, but having rounded the bounds the resulting length may be larger and may exceed
the maximum representable length for e′. To check for this we calculate the encoded length
T − B (in units of 2e), and compare it with the maximum encodable length, 29 − 1. Note
that B and T above are one bit wider than the encoding can store for this purpose. If the
maximum encodable length is exceeded we increment e by one and recompute B and T ,
this time with a guarantee that the resulting length is encodable. Finally, the oversized B
and T can drop their extra most significant bit in the final encoding.

7.13.5 Representability checks
To enable capabilities to be used to implement pointers in the C language the capability
encoding is designed to allow the address to vary within a limited range without chang-
ing the decoded bounds. The representable range of a capability is the set of addresses



70 CHAPTER 7. THE CHERIOT ISA

for which the decoded bounds remain the same. We also wish to maintain the mono-
tonicity invariant that the bounds of a valid capability must be a subset of the bounds of
the valid capability from which it is derived. Therefore, whenever the address of a ca-
pability changes the hardware must check whether the new address remains within the
representable range, otherwise the new bounds would violate this invariant. For example,
if CSetAddr or CIncAddr detects that the new address is outside of the representable range
then the tag of the result is cleared.

The representation guarantees that the bounds remain decodable provided the address,
a, and base, b, satisfy b ≤ a and a < b + 2e+9. Additionally, if e is 24 then all addresses
are representable. The representable range always includes top, although in some cases
it is the highest representable address. Therefore the representation meets the C-language
requirement that pointers may range within object bounds or ‘one byte past the end’. Other
CHERI implementations include much larger representable ranges than this minimum in
order to accommodate common C programming practices. However, this comes at the cost
of bits in the representation and our experience so far has shown that it is not necessary for
embedded systems.

The following instructions all set the capability address and therefore require a repre-
sentability check:

• AUIPCC

• AUICGP

• CSetAddr

• CIncAddr

Note that although CJAL and CJALR also set the address on the link register, it is guaranteed
to be representable because its address can be at most equal to PCC.top given that the
jump itself is in bounds. Therefore no representability check is required for these instruc-
tions.

Bounds exceptions on instruction fetch might result in an unrepresentable MEPCC. To
simplify hardware while preserving capability monotonicity the tag of MEPCC is always
cleared on instruction fetch bounds violations. This unrepresentability might mean that the
decoded bounds of MEPCC do not match the bounds of PCC at the time of the exception,
but MEPCC.address will contain the address of the faulting instruction or instruction
fetch.

Validation of MTCC and MEPCC in CSpecialRW prevents potential unrepresentability
due to the legalisation of mtvec and mepc. To simplify hardware these special registers are
validated on write, with violations clearing the tag of the value stored (Section 7.10).



7.13. CAPABILITY ENCODING 71

7.13.6 The NULL capability

The NULL capability is defined as an untagged capability with an address of zero and an
encoding of all zeroes. This definition is for maximum compatibility with the C language,
where it is used to represent NULL pointers. The NULL capability is also used as the
value of the $c0 register and to store integer results by setting the address to the required
value. Although capability fields other than the address are not meaningful on untagged
capabilities they may be queried using the CGetX instructions. Thus it can be observed that
the NULL capability decodes as an untagged, unsealed capability, with no permissions,
base 0 and length 01. Note that NULL-derived capabilities with a non-zero address may
have non-zero base and top, but will be untagged.

7.13.7 Zero length capabilities

The capability encoding described supports capabilities with zero length, where base is
equal to top. Such capabilities do not authorize access to any memory (or sealing rights),
so it may be tempting to use them as unforgeable tokens (e.g. to implement file handles),
however they come with a big drawback: zero length capabilities can be derived with base
equal to the top of an existing capability, even though that capability does not authorize
access to top. To give an example of this suppose a memory allocator gives out two ca-
pabilities with adjacent ranges [a, b) and [b, c). Later it may receive a call to ‘free’ with a
zero length capability [b, b) and it has no way to tell which of the two ranges it was derived
from. If it relies only on the base of the capability and does not validate the length the
allocator may incorrectly free [b, c). The same problem arises during revocation sweeps
as performed by Cornucopia [9], meaning it is unable to revoke zero length capabilities.
Therefore we strongly discourage the use of zero length capabilities and encourage vali-
dating the length of untrusted capabilities. As an alternative we suggest using capabilities
of length one derived from the sealing root but without PERMIT_SEAL or PERMIT_UNSEAL.
In this case USER_PERM0 may be used as a software defined permission.

7.13.8 Zero permission capabilities

In a similar vein to zero length capabilities the encoding also supports capabilities with
no permissions. These are encoded using the sealing format but may be derived from any
of the roots. We therefore caution against using zero permission capabilities as tokens,

1On other CHERI architectures the NULL capability is defined to have maximum length. This could be
achieved by tweaking the encoding (e.g. by inverting the encoded exponent and making the zero value a
special case), but there is no clear advantage to doing this.



72 CHAPTER 7. THE CHERIOT ISA

because the ability to derive the same capability from either a memory or a sealing root
may break the expected unforgeability property. They may also behave unexpectedly with
respect to revocation, since sealing capabilities are not subject to revocation but memory
capabilities are. Given these limitations it is not clear that zero permission capabilities
should be allowed at all and support may be removed in future revisions.

7.13.9 Capability layout in memory
While Figure 7.2 shows the nominal capability format, for microarchitectural reasons it
may be preferable for the capability fields to appear in a different arrangement in memory.
Future versions of the architecture may also specify a different capability format. There-
fore software should not rely on the exact layout of capabilities in memory. This said, we
expect that certain software will need knowledge of the capability format. For example,
memory allocators and the toolchain will need to be aware of alignment requirements and
a debugger will need to be able to decode capabilities from memory dumps.

7.13.10 Sail implementation
Appendix B contains Sail code implementing the capability encoding described here as
well as properties validated using SMT.

7.14 Instruction compression
Compressed load and store extensions from the standard RV32 C extension decompress
to their capability equivalents. Similar to the encodings of CLC and CSC in uncompressed
instructions, the C extension uses compressed C.LD and C.SD from RV64 to encode CLC and
CSC. In RV32 these opcodes are used to encode C.FLW and C.FSW, meaning these compressed
encodings for floating point loads and stores are no longer available. Note that this applies
to C instructions with implicit stack operands, that is we use C.LDSP (RV64) and C.SDSP

(RV64) as capability loads and stores relative to the stack capability, replacing the C.FLWSP

(RV32) and C.FSWSP (RV32) encodings. Such a decision is justified because capability
loads and stores greatly outnumber floating point instructions in embedded code, and most
devices this ISA is targeting do not have a floating point unit at all.

Implicit stack pointer arithmetic instructions are not useful with CHERI, as adding
an offset with ADD will produce an untagged integer. These instructions are modified to
decode to CIncAddr to produce valid stack-derived capabilities. As a result, C.ADDI16SP
imm is decoded into CIncAddr $csp, $csp, imm and C.ADDI4SPN $rd, imm into CIncAddr

$cd, $csp, imm.



7.15. STACK HIGH WATER MARK 73

The CHERIoT ISA introduces changes to mappings between certain compressed and
uncompressed instructions, but no changes to the encodings of compressed instructions
themselves. This translates to minimum logic modifications when adding CHERIoT ISA
support to an existing RISC-V CPU. However, experiments in Appendix E show that fur-
ther code size reduction can be achieved by introducing changes in the encoding them-
selves, to accommodate RV32E and CHERI instructions.

7.15 Stack high water mark
The stack high water mark is a simple mechanism in CHERIoT to track stack use so
that the RTOS switcher implementation can minimise the amount of stack zeroing during
compartment calls. The mechanism uses two new integer CSRs: the stack high water
mark, mshwm (0xBC1), and the stack high water mark base, mshwmb (0xBC2). These may be
read and written using the CSRRW instruction only if PCC has PERMIT_ACCESS_SYSTEM_-
REGISTERS, otherwise an attempt to do so will result in a Reserved Instruction exception.
The four least significant bits of both registers are hardwired to zeros, making them 16-
byte aligned. Any write with these bits set is legalised by rounding down.

On every memory write the address of the write (the lowest byte written) is compared
to mshwm and mshwmb. If the address is greater than or equal to mshwmb and less than
mshwm then mshwm is updated with the address of the write (rounded down to 16-byte
alignment). Thus, if mshwmb is set to the stack base (the lowest stack address) and mshwm

is initialised to the top of the stack, then mshwm will track the lowest stack address written
during execution. Since stacks grow downwards this indicates the maximum stack usage.
The RTOS uses this to optimise stack zeroing by maintaining an invariant that the stack
between mshwmb and mshwm for each thread is always zeroed. The stack high water mark
CSRs are saved and restored during context switches along with other thread state.

Note that only the address of the store is accounted for, not the width. This means
that it is possible for an unaligned store with an address below mshwmb to write bytes
above mshwmb without updating mshwm. For example, a 4-byte store to mshwmb−1 would
write the bytes at mshwmb. . . mshwmb+2 but leave mshwm unchanged, potentially breaking
the RTOS’s invariant. In practice this is not a problem as the RTOS will never issue a
capability to untrusted code that crosses the stack base and would therefore permit such a
write.2 Given this, we choose not to unnecessarily complicate the hardware by requiring
it to handle this corner case.

2In fact, no such capabilities should exist after the loader has run and initialised the thread data structures.



74 CHAPTER 7. THE CHERIOT ISA



Chapter 8

Instruction encoding summary

8.1 Primary new instructions

The RISC-V specification reserves 4 major opcodes for extensions: 11 (0xb / 0b0001011),
43 (0x2b / 0b0101011), 91 (0x5b / 0b1011011), and 123 (0x7b / 0b1111011). The pro-
posed CHERI encodings use major opcode 0x5b for all capability instructions.
All register-register operations use the RISC-V R-type or I-type encoding formats.

8.1.1 Capability-Inspection Instructions
067111214151920242531

0x7f 0x0 cs1 0x0 rd 0x5b CGetPerm rd, cs1

0x7f 0x1 cs1 0x0 rd 0x5b CGetType rd, cs1

0x7f 0x2 cs1 0x0 rd 0x5b CGetBase rd, cs1

0x7f 0x3 cs1 0x0 rd 0x5b CGetLen rd, cs1

0x7f 0x4 cs1 0x0 rd 0x5b CGetTag rd, cs1

0x7f 0xf cs1 0x0 rd 0x5b CGetAddr rd, cs1

0x7f 0x17 cs1 0x0 rd 0x5b CGetHigh rd, cs1

0x7f 0x18 cs1 0x0 rd 0x5b CGetTop rd, cs1

75



76 CHAPTER 8. INSTRUCTION ENCODING SUMMARY

8.1.2 Capability-Modification Instructions
067111214151920242531

0xb cs2 cs1 0x0 cd 0x5b CSeal cd, cs1, cs2

0xc cs2 cs1 0x0 cd 0x5b CUnseal cd, cs1, cs2

0xd rs2 cs1 0x0 cd 0x5b CAndPerm cd, cs1, rs2

0x10 rs2 cs1 0x0 cd 0x5b CSetAddr cd, cs1, rs2

0x11 rs2 cs1 0x0 cd 0x5b CIncAddr cd, cs1, rs2

imm[11:0] cs1 0x1 cd 0x5b CIncAddrImm cd, cs1, imm

0x8 rs2 cs1 0x0 cd 0x5b CSetBounds cd, cs1, rs2

0x9 rs2 cs1 0x0 cd 0x5b CSetBoundsExact cd, cs1, rs2

uimm[11:0] cs1 0x2 cd 0x5b CSetBoundsImm cd, cs1, uimm

0x16 rs2 cs1 0x0 cd 0x5b CSetHigh cd, cs1, rs2

0x7f 0xb cs1 0x0 cd 0x5b CClearTag cd, cs1

CSetBoundsExact may not be required.

8.1.3 Pointer-Arithmetic Instructions
067111214151920242531

0x14 cs2 cs1 0x0 rd 0x5b CSub rd, cs1, cs2

0x7f 0xa cs1 0x0 cd 0x5b CMove cd, cs1

8.1.4 Pointer-Comparison Instructions
067111214151920242531

0x20 cs2 cs1 0x0 rd 0x5b CTestSubset rd, cs1, cs2

0x21 cs2 cs1 0x0 rd 0x5b CSetEqualExact rd, cs1, cs2

8.1.5 Special Capabilty Register Access Instructions
067111214151920242531

0x1 scr cs1 0x0 cd 0x5b CSpecialRW cd, scr, cs1



8.2. MODIFICATIONS TO EXISTING RISC-V INSTRUCTIONS 77

8.1.6 Adjusting to Compressed Capability Precision Instructions
067111214151920242531

0x7f 0x8 rs1 0x0 rd 0x5b CRoundRepresentableLength rd, rs1

0x7f 0x9 rs1 0x0 rd 0x5b CRepresentableAlignmentMask rd, rs1

8.2 Modifications to existing RISC-V instructions

8.2.1 Control-Flow Instructions
No special new control flow instructions are added, although RISC-V JAL / JALR become
capability instructions CJAL / CJALR.

8.2.2 Memory-Access Instructions

The standard RV32 load and store instructions are modified to take a capability as the base
address:

067111214151920242531

imm[11:0] cs1 op rd 0x3 CL[BHW][U] rd, cs1, imm

imm[11:5] rs2 cs1 op imm[4:0] 0x23 CS[BHW] rs2, cs1, imm

The RV64 instructions LD and SD are reused to behave as load capability (LC) and store
capability (SC) respectively:

067111214151920242531

imm rs1 0x3 cd 0x3 CLC cd, rs1, imm (RV32)

imm[11:5] cs2 rs1 0x3 imm[4:0] 0x23 CSC cs2, rs1, imm (RV32)

8.2.3 Address Construction Instructions
The AUIPC instruction is replaced by AUIPCC, which derives capabilities from PCC. Our
ABI also requires a new instruction, AUICGP, that is similar to AUIPCC but derives from $c3

($cgp). This required allocating a new major opcode, although we expect that further sup-
port for linker relaxation may remove the need for AUICGP.



78 CHAPTER 8. INSTRUCTION ENCODING SUMMARY

067111231

imm[31:12] cd 0x17 AUIPCC cd, imm

imm[31:12] cd 0x7b AUICGP cd, imm

8.3 Encoding Summary

The CHERIoT ISA shares encodings with CHERI-RISC-V. The general-purpose instruc-
tions use the 0x5b major opcode and use the RISC-V R-type or I-type encoding formats.
CHERI-RISC-V uses the funct3 field from bits 14-12 as a top-level opcode, and funct7
as a secondary opcode for standard 3-register operand instructions. Two-register operand
instructions and single-register operand instructions are a subset of the 3-register operand
encodings.

Top-level encoding allocation (funct3 field)

00 01 10 11
0 Two Source & Dest CIncAddrImm CSetBoundsImm -
1 - - - -

Two Source & Dest encoding allocation (funct7 field)

All three-register-operand (two sources, one destination) CHERI-RISC-V instructions use
the RISC-V R-type encoding format, with the same funct field stored in funct7 and a 0
value in funct3.

func rs2/cs2 cs1 0x0 cd 0x5b



8.3. ENCODING SUMMARY 79

00 01 10 11
00000 - CSpecialRW - -
00001 - - - -
00010 CSetBounds CSetBoundsExact - CSeal
00011 CUnseal CAndPerm - -
00100 CSetAddr CIncAddr - -
00101 CSub - CSetHigh -
00110 - - - -
00111 - - - -
01000 CTestSubset CSEQX - -
01001 - - - -
01010 - - - -
01011 - - - -
01100 - - - -
01101 - - - -
01110 - - - -
01111 - - - -
10000 - - - -
10001 - - - -
10010 - - - -
10011 - - - -
10100 - - - -
10101 - - - -
10110 - - - -
10111 - - - -
11000 - - - -
11001 - - - -
11010 - - - -
11011 - - - -
11100 - - - -
11101 - - - -
11110 - - - -
11111 Stores Loads Two Source Source & Dest

†Reserved for future use.



80 CHAPTER 8. INSTRUCTION ENCODING SUMMARY

Two Source encoding allocation (rd field)

There are currently no two source instructions but they would be of the following form:

067111214151920242531

0x7e rs2/cs2 rs1/cs1 0x0 func 0x5b

00 01 10 11
000 - - - -
001 - - - -
010 - - - -
011 - - - -
100 - - - -
101 - - - -
110 - - - -
111 - - - One Source

†Reserved for future use.

One Source encoding allocation (rs2 field)

There are currently no one source instructions but they would be of the following form:

067111214151920242531

0x7e func rs1/cs1 0x0 0x1f 0x5b

00 01 10 11
000 - - - -
001 - - - -
010 - - - -
011 - - - -
100 - - - -
101 - - - -
110 - - - -
111 - - - -

†Reserved for future use.



8.3. ENCODING SUMMARY 81

Source & Dest encoding allocation (rs2 field)
Source & Dest instructions are of the following form:

067111214151920242531

0x7f func rs1/cs1 0x0 rd/cd 0x5b

00 01 10 11
000 CGetPerm CGetType CGetBase CGetLen
001 CGetTag - - -
010 CRRL CRAM CMove CClearTag
011 - - - CGetAddr
100 - - - -
101 - - - CGetHigh
110 CGetTop - - -
111 - - - Dest-Only

†Reserved for future use.

Dest-Only encoding allocation (rs1 field)
We do not currently have any one-register-operand instructions, but any future dest-only
instructions will be of the following form:

067111214151920242531

0x7f 0x1f func 0x0 rd 0x5b

00 01 10 11
000 - - - -
001 - - - -
010 - - - -
011 - - - -
100 - - - -
101 - - - -
110 - - - -
111 - - - -



82 CHAPTER 8. INSTRUCTION ENCODING SUMMARY



Chapter 9

Instruction reference

In this chapter, we specify each instruction via both informal descriptions and code in
the Sail language. To allow for more succinct code descriptions, we rely on a number of
common function definitions and constants also described in this chapter.

9.1 Sail language used in instruction descriptions
The instruction descriptions contained in this chapter are accompanied by code in the Sail
language [4, 18] taken from the CHERIoT Sail implementation [15], which is derived
from the CHERI-RISC-V Sail implementation [5]. Sail is a domain specific imperative
language designed for describing processor architectures. It has a compiler that can output
executable code in OCaml or C for building executable models, and can also translate to
various theorem prover languages for automated reasoning about the ISA. The following
is a brief description of the Sail language features used in document. For a full description
see the Sail language documentation [18].
Types used in Sail:

• int Sail integers are of arbitrary precision (therefore there are no overflows) but
can be constrained using simple first-order constraints. As a common case integer
range types can be defined using range(a,b) to indicate an integer in the range a to
b inclusive. Operations on integers respect the constraints on their operands so, for
example, if x and y have type range(a, b) then x + y has type range(a + a, b + b).
Integer literals are written in decimal.

• bits(n) is a bit vector of length n. Vectors are indexed using square bracket notation
with index 0 being the least significant bit. Arithmetic and logical operations on
vectors are defined on two vectors of equal length producing a result of the same

83



84 CHAPTER 9. INSTRUCTION REFERENCE

length and truncating on overflow. Where signedness is significant it is indicated in
the operator name, for example <_s performs signed comparison of bit vectors . Bit
vector literals are written in hexadecimal for multiples of four bits or in binary with
0x or 0b prefixes, e.g. 0x3 means ‘0011’ and 0b11 means ‘11’. The at symbol, @,
indicates concatenation of vectors.

• structs are similar to C structs with named, typed fields accessed with a dot as in
struct_val.field_name. Struct copying with field updates is also supported as in
{struct_val with field_name=new_val}.

• Registers in Sail contain the architectural state that is modified by instruction exe-
cution. By convention register names in the CHERI specification start with a capital
letter to distinguish them from local variables. Sail also supports a form of ‘as-
signment’ to function calls as in wGPR(rd)= result. This is just syntactic sugar for
an extra argument to the function call. This syntax is used by functions that write
registers or memory and have special behavior such as wGPR, writeCapReg and MEMw.

The following operators and expression syntax are used in the Sail code:

• Boolean operators: not, | (logical OR), & (logical AND), ^ (exclusive OR)
• Integer operators: + (addition), - (subtraction), * (multiplication), % (modulo)

Sail operations on integers are the usual mathematical operators. Note a % b is the
modulo operator that, for b > 0 returns a value in the range 0 to b − 1 regardless
of the sign of a. Although Sail integers are notionally infinite in range, CHERI
instructions can be implemented with finite arithmetic.

• Bit vector operators: & (bitwise AND), <_s (signed less than), @ (bit vector concate-
nation)

• Equality: == (equal), != (not equal)
• Vector slice:
v[a..b]

Creates a sub-range of a vector from index a down to b inclusive.
• Local variables:
mutable_var = exp;

let immutable_var = exp;

Mutable variables are introduced by simply assigning to them (optionally prefixed
with keyword var). An explicit type may be given following a colon, but types can
usually be inferred. Sail supports mutable or immutable variables where immutable
ones are introduced by let and assigned only once when created.

• Functional if:
if cond then exp1 else exp2

May return a value, similar to C ternary operator.



9.2. CONSTANT DEFINITIONS 85

• Foreach loop:
foreach(i from start_exp to end_exp) {

body

};

• Function invocation:
func_id (arg1, arg2)

• Field selection from struct:
struct_val.field

Returns the value of the given field from structure.
• Functional update of structure:
{struct_val with field=exp}

A copy of the structure with the named field replaced with another value.

9.2 Constant Definitions

The following constants are used in various type and function definitions throughout the
specification.

type xlen : Int = 32

type cap_addr_width : Int = xlen

type cap_len_width : Int = cap_addr_width + 1

type cap_E_width : Int = 5

type cap_cE_width : Int = 4

type cap_max_E : Int = 24

type cap_size : Int = 8

type cap_mantissa_width : Int = 9

type cap_perms_width : Int = 12

type cap_cperms_width : Int = 6

type cap_otype_width : Int = 4

type cap_cotype_width : Int = 3

type log2_revocation_granule_size : Int = 3

9.3 Function Definitions

This section contains descriptions of convenience functions used by the Sail code featured
in this chapter.



86 CHAPTER 9. INSTRUCTION REFERENCE

Functions for integer and bit vector manipulation
The following functions convert between bit vectors and integers and manipulate bit vec-
tors:

unsigned : forall ’n. bits(’n) -> range(0, 2 ^ ’n - 1)

signed : forall ’n, ’n > 0. bits(’n) -> range(- (2 ^ (’n - 1)), 2 ^ (’n - 1) -

1)

to_bits : forall ’l, ’l >= 0. (int(’l), int) -> bits(’l)

bool_to_bit : bool -> bit

bool_to_bits : bool -> bits(1)

truncate : forall ’m ’n, (’m >= 0 & ’m <= ’n). (bits(’n), int(’m)) -> bits(’m)

truncateLSB : forall ’m ’n, (’m >= 0 & ’m <= ’n). (bits(’n), int(’m)) -> bits(’

m)

pow2 : forall ’n. int(’n) -> int(2 ^ ’n)

align_down : forall ’n ’m, (’n >= 1 & ’m > ’n). (int(’n), bits(’m)) -> bits(’m)

EXTZ

Adds zeros in most significant bits of vector to obtain a vector of desired length.

EXTS

Extends the most significant bits of vector preserving the sign bit.

zeros

Produces a bit vector of all zeros

ones

Produces a bit vector of all ones

Types used in function definitions
type CapBits = bits(8 * cap_size)

type CapAddrBits = bits(cap_addr_width)

type CapLenBits = bits(cap_len_width)

type CapPermsBits = bits(cap_perms_width)

Many functions also use struct Capability, a structure holding a partially-decompressed
representation of CHERI capabilities.
Functions for reading and writing register and memory



9.3. FUNCTION DEFINITIONS 87

C(n) : regno -> Capability

C(n) : (regno, Capability) -> unit

The overloaded function C(n) is used to read or write capability register n.
X(n) : regno -> xlenbits

X(n) : (regno, xlenbits) -> unit

The overloaded function X(n) is used to read or write integer register n.

mem_read_cap : (xlenbits, bool, bool, bool) -> MemoryOpResult(Capability)

mem_read_cap_revoked : xlenbits -> bool

mem_write_ea_cap : (xlenbits, bool, bool, bool) -> MemoryOpResult(unit)

mem_write_cap : (xlenbits, Capability, bool, bool, bool) -> MemoryOpResult(bool

)

Functions for ISA exception behavior
handle_exception : ExceptionType -> unit

handle_illegal : unit -> unit

handle_mem_exception : (xlenbits, ExceptionType) -> unit

handle_cheri_cap_exception : (CapEx, capreg_idx) -> unit

handle_cheri_reg_exception : (CapEx, regidx) -> unit

min_instruction_bytes : unit -> CapAddrInt

Functions for manipulating capabilities
The Sail code abstracts the capability representation using the following functions for
getting and setting fields in the capability. The base of the capability is the address of the
first byte of memory to which it grants access and the top is one greater than the last byte,
so the set of dereferenceable addresses is:

{a ∈ N | base ≤ a < top}

Note that the capability format can encode top of 232, meaning the entire 32-bit address
space can be addressed.

getCapBounds : Capability -> (CapAddrInt, CapLen)

getCapBaseBits : Capability -> CapAddrBits

getCapTop : Capability -> CapLen



88 CHAPTER 9. INSTRUCTION REFERENCE

getCapLength : Capability -> CapLen

inCapBounds : (Capability, CapAddrBits, CapLen) -> bool

The following functions adjust the bounds and address of capabilities. Not all combina-
tions of bounds and address are representable, so these functions return a boolean value
indicating whether the requested operation was successful. Even in the case of failure a
capability is still returned, although it may not preserve the bounds of the original capabil-
ity.

setCapBounds : (Capability, CapAddrBits, CapAddrBits) -> (bool, Capability)

setCapAddr : (Capability, CapAddrBits) -> (bool, Capability)

incCapAddr : (Capability, CapAddrBits) -> (bool, Capability)

getRepresentableAlignmentMask : xlenbits -> xlenbits

getRepresentableLength : xlenbits -> xlenbits

sealCap : (Capability, bits(cap_otype_width)) -> Capability

unsealCap : Capability -> Capability

isCapSealed : Capability -> bool

clearTag : Capability -> Capability

clearTagIf : (Capability, bool) -> Capability

clearTagIfSealed : Capability -> Capability

The architectural permissions as described in Section 7.13.1 are accessed using the fol-
lowing functions:

getCapPerms : Capability -> CapPermsBits

setCapPerms : (Capability, CapPermsBits) -> Capability

Checking for availability of ISA features
haveRVC : unit -> bool

haveFExt : unit -> bool

9.4 CHERIoT Instructions



9.4. CHERIOT INSTRUCTIONS 89

AUICGP
Format

AUICGP cd, imm
067111231

imm[31:12] cd 0x7b

Semantics

let off : xlenbits = sign_extend(imm) << 11;

let cgp_val = C(CGP_IDX); /* $c3 */

let (representable, newCap) = incCapAddr(cgp_val, off);

C(cd) = clearTagIf(newCap, isCapSealed(cgp_val) | not(representable));

RETIRE_SUCCESS



90 CHAPTER 9. INSTRUCTION REFERENCE

AUIPCC
Format

AUIPCC cd, imm
067111231

imm[31:12] cd 0x17

Semantics

let off : xlenbits = sign_extend(imm) << 11;

let (representable, newCap) = setCapAddr(PCC, PC + off);

C(cd) = clearTagIf(newCap, not(representable));

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 91

CAndPerm
Format

CAndPerm cd, cs1, rs2
067111214151920242531

0xd rs2 cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

let rs2_val = X(rs2);

let perms = getCapPerms(cs1_val);

let mask = truncate(rs2_val, cap_perms_width);

let inCap = clearTagIfSealed(cs1_val);

let newCap = setCapPerms(inCap, (perms & mask));

C(cd) = newCap;

RETIRE_SUCCESS



92 CHAPTER 9. INSTRUCTION REFERENCE

CClearTag
Format

CClearTag cd, cs1
067111214151920242531

0x7f 0xb cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

C(cd) = clearTag(cs1_val);

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 93

CGetAddr
Format

CGetAddr rd, cs1
067111214151920242531

0x7f 0xf cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

X(rd) = capVal.address;

RETIRE_SUCCESS



94 CHAPTER 9. INSTRUCTION REFERENCE

CGetBase
Format

CGetBase rd, cs1
067111214151920242531

0x7f 0x2 cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

X(rd) = getCapBaseBits(capVal);

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 95

CGetHigh
Format

CGetHigh rd, cs1
067111214151920242531

0x7f 0x17 cs1 0x0 rd 0x5b

Semantics

let capVal : Capability = C(cs1);

X(rd) = capToBits(capVal)[sizeof(xlen) * 2 - 1 .. sizeof(xlen)];

RETIRE_SUCCESS



96 CHAPTER 9. INSTRUCTION REFERENCE

CGetLen
Format

CGetLen rd, cs1
067111214151920242531

0x7f 0x3 cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

let len = getCapLength(capVal);

X(rd) = to_bits(sizeof(xlen), if len > cap_max_addr then cap_max_addr else len)

;

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 97

CGetPerm
Format

CGetPerm rd, cs1
067111214151920242531

0x7f 0x0 cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

X(rd) = zero_extend(getCapPerms(capVal));

RETIRE_SUCCESS



98 CHAPTER 9. INSTRUCTION REFERENCE

CGetTag
Format

CGetTag rd, cs1
067111214151920242531

0x7f 0x4 cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

X(rd) = zero_extend(bool_to_bits(capVal.tag));

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 99

CGetTop
Format

CGetTop rd, cs1
067111214151920242531

0x7f 0x18 cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

let top = getCapTop(capVal);

X(rd) = to_bits(sizeof(xlen), if top > cap_max_addr then cap_max_addr else top)

;

RETIRE_SUCCESS



100 CHAPTER 9. INSTRUCTION REFERENCE

CGetType
Format

CGetType rd, cs1
067111214151920242531

0x7f 0x1 cs1 0x0 rd 0x5b

Semantics

let capVal = C(cs1);

X(rd) = zero_extend(capVal.otype);

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 101

CIncAddr
Format

CIncAddr cd, cs1, rs2
067111214151920242531

0x11 rs2 cs1 0x0 cd 0x5b

CIncOffset is an alias for this instruction.

Semantics

let cs1_val = C(cs1);

let rs2_val = X(rs2);

let inCap = clearTagIfSealed(cs1_val);

let (success, newCap) = incCapAddr(inCap, rs2_val);

C(cd) = clearTagIf(newCap, not(success));

RETIRE_SUCCESS



102 CHAPTER 9. INSTRUCTION REFERENCE

CIncAddrImm
Format

CIncAddrImm cd, cs1, imm
06711121415192031

imm[11:0] cs1 0x1 cd 0x5b

CIncOffsetImm is an alias for this instruction.

Semantics

let cs1_val = C(cs1);

let immBits : xlenbits = sign_extend(imm);

let inCap = clearTagIfSealed(cs1_val);

let (success, newCap) = incCapAddr(inCap, immBits);

C(cd) = clearTagIf(newCap, not(success));

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 103

CJAL
Format

CJAL cd, imm
06711121920213031

i[
20

]

imm[10:1] i[
11

]

imm[19:12] cd 0x6f

Semantics

let off : xlenbits = sign_extend(imm);

let newPC = PC + off;

if newPC[1] == bitone & ~(haveRVC()) then {

handle_mem_exception(newPC, E_Fetch_Addr_Align());

RETIRE_FAIL

} else {

let (success, linkCap) = setCapAddr(PCC, nextPC); /* Note that nextPC

accounts for compressed instructions */

assert(success, "Link cap should always be representable.");

assert(not (isCapSealed(linkCap)), "Link cap should always be unsealed");

let sentry_type = if mstatus.MIE() == 0b1 then otype_sentry_bie else

otype_sentry_bid;

C(cd) = sealCap(linkCap, to_bits(cap_otype_width, sentry_type));

nextPC = newPC;

RETIRE_SUCCESS

}



104 CHAPTER 9. INSTRUCTION REFERENCE

CJALR

Format

CJALR cd, cs1, imm

06711121415192031

imm[11:0] cs1 0 cd 0x67

Semantics

let cs1_val = C(cs1);

let off : xlenbits = sign_extend(imm);

let newPC = [cs1_val.address + off with 0 = bitzero]; /* clear bit zero as for

RISCV JALR */

if not (cs1_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs1);

RETIRE_FAIL

} else if (isCapSealed(cs1_val) & imm != zeros()) |

not ((cd == zreg & cs1 == ra & isCapBackwardSentry(cs1_val)) |

(cd == zreg & cs1 != ra & (not(isCapSealed(cs1_val)) |

isCapForwardInheritSentry(cs1_val))) |

(cd != zreg & (not(isCapSealed(cs1_val)) |

isCapForwardInheritSentry(cs1_val))) |

(cd == ra & (not(isCapSealed(cs1_val)) | isCapForwardSentry(

cs1_val)))) then {

handle_cheri_reg_exception(CapEx_SealViolation, cs1);

RETIRE_FAIL

} else if not (cs1_val.permit_execute) then {

handle_cheri_reg_exception(CapEx_PermitExecuteViolation, cs1);

RETIRE_FAIL

} else if newPC[1] == bitone & ~(haveRVC()) then {

handle_mem_exception(newPC, E_Fetch_Addr_Align());

RETIRE_FAIL

} else {

let (success, linkCap) = setCapAddr(PCC, nextPC); /* Note that nextPC

accounts for compressed instructions */

assert(success, "Link cap should always be representable.");

assert(not (isCapSealed(linkCap)), "Link cap should always be unsealed");



9.4. CHERIOT INSTRUCTIONS 105

let sentry_type = if mstatus.MIE() == 0b1 then otype_sentry_bie else

otype_sentry_bid;

C(cd) = sealCap(linkCap, to_bits(cap_otype_width, sentry_type));

nextPC = newPC;

nextPCC = unsealCap(cs1_val);

if unsigned(cs1_val.otype) == otype_sentry_id | unsigned(cs1_val.otype) ==

otype_sentry_bid then

mstatus->MIE() = 0b0;

if unsigned(cs1_val.otype) == otype_sentry_ie | unsigned(cs1_val.otype) ==

otype_sentry_bie then

mstatus->MIE() = 0b1;

RETIRE_SUCCESS

}



106 CHAPTER 9. INSTRUCTION REFERENCE

CLC
Format

CLC cd, cs1, imm
06711121415192031

imm cs1 0x3 cd 0x3

Semantics

let offset : xlenbits = sign_extend(imm);

let auth_val = C(cs1);

let vaddrBits = auth_val.address + offset;

if not(auth_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs1);

RETIRE_FAIL

} else if isCapSealed(auth_val) then {

handle_cheri_reg_exception(CapEx_SealViolation, cs1);

RETIRE_FAIL

} else if not (auth_val.permit_load) then {

handle_cheri_reg_exception(CapEx_PermitLoadViolation, cs1);

RETIRE_FAIL

} else if not(inCapBounds(auth_val, vaddrBits, cap_size)) then {

handle_cheri_reg_exception(CapEx_BoundsViolation, cs1);

RETIRE_FAIL

} else if not(is_aligned_addr(vaddrBits, cap_size)) then {

handle_mem_exception(vaddrBits, E_Load_Addr_Align());

RETIRE_FAIL

} else match translateAddr(vaddrBits, Read(Cap)) {

TR_Failure(E_Extension(_), _) => { internal_error(__FILE__, __LINE__,"

unexpected cheri exception for cap load") },

TR_Failure(e, _) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },

TR_Address(addr, ptw_info) => {

let c = mem_read_cap(addr, false, false, false);

match c {

MemValue(v) => {

var cr = v;

if ptw_info.ptw_lc == PTW_LC_CLEAR | not(auth_val.

permit_load_store_cap) then {

cr.tag = false;



9.4. CHERIOT INSTRUCTIONS 107

};

if cr.tag & not(auth_val.permit_load_global) then {

/* Without load-global authority, the loaded cap is always local */

cr.global = false;

if not(isCapSealed(cr)) then {

/*

* Loading an unsealed capability without load global authority

* results in attenuation of the loaded capability’s permission,

* transitively weakening the view through said authority.

*

* But sealing stops this transitivity. Even if the authority

* lacks load global permission, a loaded sealed cap retains its

* load global permission, as it requires separate unsealing

* authority to exercise.

*/

cr.permit_load_global = false;

}

};

if cr.tag & not(auth_val.permit_load_mutable) & not(isCapSealed(cr))

then {

/*

* Loading an unsealed capability without load mutable authority

* also results in attenuated permissions. As above, sealing stops

* transitivity, but also the loaded sealed capability retains its

* store permission.

*/

cr.permit_store = false;

cr.permit_load_mutable = false;

};

/* Sealing capabilities are excluded from revocation */

let isSealingCap = cr.permit_seal | cr.permit_unseal | cr.perm_user0;

if (cr.tag & not(isSealingCap)) then {

let base = getCapBaseBits(cr);

let granule_addr = align_down(log2_revocation_granule_size, base);

let revoked = mem_read_cap_revoked(granule_addr);

cr.tag = cr.tag & not(revoked);

};

C(cd) = cr;

RETIRE_SUCCESS

},

MemException(e) => {handle_mem_exception(vaddrBits, e); RETIRE_FAIL }



108 CHAPTER 9. INSTRUCTION REFERENCE

}

}

}



9.4. CHERIOT INSTRUCTIONS 109

CMove
Format

CMove cd, cs1
067111214151920242531

0x7f 0xa cs1 0x0 cd 0x5b

Semantics

C(cd) = C(cs1);

RETIRE_SUCCESS



110 CHAPTER 9. INSTRUCTION REFERENCE

CRepresentableAlignmentMask
Format

CRepresentableAlignmentMask rd, rs1
067111214151920242531

0x7f 0x9 rs1 0x0 rd 0x5b

Semantics

let len = X(rs1);

X(rd) = getRepresentableAlignmentMask(len);

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 111

CRoundRepresentableLength
Format

CRoundRepresentableLength rd, rs1
067111214151920242531

0x7f 0x8 rs1 0x0 rd 0x5b

Semantics

let len = X(rs1);

X(rd) = getRepresentableLength(len);

RETIRE_SUCCESS



112 CHAPTER 9. INSTRUCTION REFERENCE

CSC
Format

CSC cs2, cs1, imm
067111214151920242531

imm[11:5] cs2 cs1 0x3 imm[4:0] 0x23

Semantics

let offset : xlenbits = sign_extend(imm);

let auth_val = C(cs1);

let vaddrBits = auth_val.address + offset;

let cs2_val = C(cs2);

if not(auth_val.tag) then {

handle_cheri_reg_exception(CapEx_TagViolation, cs1);

RETIRE_FAIL

} else if isCapSealed(auth_val) then {

handle_cheri_reg_exception(CapEx_SealViolation, cs1);

RETIRE_FAIL

} else if not (auth_val.permit_store) then {

handle_cheri_reg_exception(CapEx_PermitStoreViolation, cs1);

RETIRE_FAIL

} else if not (auth_val.permit_load_store_cap) & cs2_val.tag then {

handle_cheri_reg_exception(CapEx_PermitStoreCapViolation, cs1);

RETIRE_FAIL

} else if not(inCapBounds(auth_val, vaddrBits, cap_size)) then {

handle_cheri_reg_exception(CapEx_BoundsViolation, cs1);

RETIRE_FAIL

} else if not(is_aligned_addr(vaddrBits, cap_size)) then {

handle_mem_exception(vaddrBits, E_SAMO_Addr_Align());

RETIRE_FAIL

} else match translateAddr(vaddrBits, Write(if cs2_val.tag then Cap else Data))

{

TR_Failure(e, _) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },

TR_Address(addr, _) => {

let eares : MemoryOpResult(unit) = mem_write_ea_cap(addr, false, false,

false);

match (eares) {

MemException(e) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL },



9.4. CHERIOT INSTRUCTIONS 113

MemValue(_) => {

let stored_val =

clearTagIf(cs2_val, not (auth_val.permit_store_local_cap) &

( not(cs2_val.global)

| isCapBackwardSentry(cs2_val) ));

let res : MemoryOpResult(bool) = mem_write_cap(addr, stored_val, false,

false, false);

match (res) {

MemValue(true) => RETIRE_SUCCESS,

MemValue(false) => internal_error(__FILE__, __LINE__,"store got false

from mem_write_value"),

MemException(e) => { handle_mem_exception(vaddrBits, e); RETIRE_FAIL

}

}

}

}

}

}



114 CHAPTER 9. INSTRUCTION REFERENCE

CSeal
Format

CSeal cd, cs1, cs2
067111214151920242531

0xb cs2 cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

let cs2_val = C(cs2);

let cs2_addr = unsigned(cs2_val.address);

let (cs2_base, cs2_top) = getCapBounds(cs2_val);

let isPermittedOtype : bool =

if cs1_val.permit_execute then

match (cs2_addr) {

/* 0 is unsealed */

1 => true, /* otype_sentry */

2 => true, /* otype_sentry_id */

3 => true, /* otype_sentry_ie */

4 => true, /* otype_sentry_bid */

5 => true, /* otype_sentry_bie */

6 => true,

7 => true,
_ => false

}

else

(8 < cs2_addr) & (cs2_addr <= 15);

let permitted = cs2_val.tag

& not(isCapSealed(cs2_val))

& cs2_val.permit_seal

& (cs2_addr >= cs2_base)

& (cs2_addr < cs2_top)

& isPermittedOtype;

let inCap = clearTagIfSealed(cs1_val);



9.4. CHERIOT INSTRUCTIONS 115

let newCap = sealCap(inCap, to_bits(cap_otype_width, cs2_addr));

C(cd) = clearTagIf(newCap, not(permitted));

RETIRE_SUCCESS



116 CHAPTER 9. INSTRUCTION REFERENCE

CSetAddr
Format

CSetAddr cd, cs1, rs2
067111214151920242531

0x10 rs2 cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

let rs2_val = X(rs2);

let inCap = clearTagIfSealed(cs1_val);

let (representable, newCap) = setCapAddr(inCap, rs2_val);

C(cd) = clearTagIf(newCap, not(representable));

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 117

CSetBounds
Format

CSetBounds cd, cs1, rs2
067111214151920242531

0x8 rs2 cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

let rs2_val = X(rs2);

let newBase = cs1_val.address;

let newLen = rs2_val;

let inBounds = inCapBounds(cs1_val, newBase, unsigned(newLen));

let inCap = clearTagIfSealed(cs1_val);

let (_, newCap) = setCapBounds(inCap, newBase, newLen);

C(cd) = clearTagIf(newCap, not(inBounds)); /* ignore exact */

RETIRE_SUCCESS



118 CHAPTER 9. INSTRUCTION REFERENCE

CSetBoundsExact
Format

CSetBoundsExact cd, cs1, rs2
067111214151920242531

0x9 rs2 cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

let rs2_val = X(rs2);

let newBase = cs1_val.address;

let newLen = X(rs2);

let inBounds = inCapBounds(cs1_val, newBase, unsigned(newLen));

let inCap = clearTagIfSealed(cs1_val);

let (exact, newCap) = setCapBounds(inCap, newBase, newLen);

C(cd) = clearTagIf(newCap, not(inBounds & exact));

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 119

CSetBoundsImm
Format

CSetBoundsImm cd, cs1, uimm
06711121415192031

uimm[11:0] cs1 0x2 cd 0x5b

Semantics

let cs1_val = C(cs1);

let newBase = cs1_val.address;

let newLen : CapAddrBits = zero_extend(uimm);

let inBounds = inCapBounds(cs1_val, newBase, unsigned(newLen));

let inCap = clearTagIfSealed(cs1_val);

let (_, newCap) = setCapBounds(inCap, newBase, newLen);

C(cd) = clearTagIf(newCap, not(inBounds)); /* ignore exact */

RETIRE_SUCCESS



120 CHAPTER 9. INSTRUCTION REFERENCE

CSetEqualExact
Format

CSetEqualExact rd, cs1, cs2
067111214151920242531

0x21 cs2 cs1 0x0 rd 0x5b

Semantics

let cs1_val = C(cs1);

let cs2_val = C(cs2);

X(rd) = zero_extend(bool_to_bits(cs1_val == cs2_val));

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 121

CSetHigh
Format

CSetHigh cd, cs1, rs2
067111214151920242531

0x16 rs2 cs1 0x0 cd 0x5b

Semantics

let capVal = C(cs1);

let intVal = X(rs2);

let capLow : xlenbits = capToBits(capVal)[sizeof(xlen) - 1 .. 0];

let newCap : Capability = capBitsToCapability(false, intVal @ capLow);

C(cd) = newCap;

RETIRE_SUCCESS



122 CHAPTER 9. INSTRUCTION REFERENCE

CSpecialRW
Format

CSpecialRW cd, scr, cs1
067111214151920242531

0x1 scr cs1 0x0 cd 0x5b

Semantics

let specialExists : bool = match unsigned(scr) {

28 => true,

29 => true,

30 => true,

31 => true,
_ => false

};

if (not(specialExists)) then {

handle_illegal();

RETIRE_FAIL

} else if not(PCC.access_system_regs) then {

handle_cheri_cap_exception(CapEx_AccessSystemRegsViolation, 0b1 @ scr);

RETIRE_FAIL

} else {

var cs1_val = C(cs1);

C(cd) = match unsigned(scr) {

28 => MTCC,

29 => MTDC,

30 => MScratchC,

31 => MEPCC,
_ => {assert(false, "unreachable"); undefined}

};

if (cs1 != zeros()) then {

match unsigned(scr) {

28 => {

/* Validate that the new MTCC is unsealed, executable and

indicates direct trap mode */

let invalid = cs1_val.address[1..0] != 0b00 |

isCapSealed(cs1_val) |

not(cs1_val.permit_execute);



9.4. CHERIOT INSTRUCTIONS 123

/* Legalize MTCC.address / mtvec */

cs1_val.address[1..0] = 0b00;

MTCC = clearTagIf(cs1_val, invalid)

},

29 => MTDC = cs1_val,

30 => MScratchC = cs1_val,

31 => {

/* Validate that new MEPCC is aligned, unsealed and executable */

let invalid = cs1_val.address[0] != bitzero |

isCapSealed(cs1_val) |

not(cs1_val.permit_execute);

/* Legalize MEPCC.address / mepc */

cs1_val.address[0] = bitzero;

MEPCC = clearTagIf(cs1_val, invalid)

},
_ => assert(false, "unreachable")

}

};

RETIRE_SUCCESS

}



124 CHAPTER 9. INSTRUCTION REFERENCE

CSub
Format

CSub rd, cs1, cs2
067111214151920242531

0x14 cs2 cs1 0x0 rd 0x5b

Semantics

let cs2_val = C(cs2);

let cs1_val = C(cs1);

X(rd) = cs1_val.address - cs2_val.address;

RETIRE_SUCCESS



9.4. CHERIOT INSTRUCTIONS 125

CTestSubset
Format

CTestSubset rd, cs1, cs2
067111214151920242531

0x20 cs2 cs1 0x0 rd 0x5b

Semantics

let cs1_val = C(cs1);

let cs2_val = C(cs2);

let (cs2_base, cs2_top) = getCapBounds(cs2_val);

let (cs1_base, cs1_top) = getCapBounds(cs1_val);

let cs2_perms = getCapPerms(cs2_val);

let cs1_perms = getCapPerms(cs1_val);

let result = if cs1_val.tag != cs2_val.tag then

0b0

else if cs2_base < cs1_base then

0b0

else if cs2_top > cs1_top then

0b0

else if (cs2_perms & cs1_perms) != cs2_perms then

0b0

else

0b1;

X(rd) = zero_extend(result);

RETIRE_SUCCESS



126 CHAPTER 9. INSTRUCTION REFERENCE

CUnseal
Format

CUnseal cd, cs1, cs2
067111214151920242531

0xc cs2 cs1 0x0 cd 0x5b

Semantics

let cs1_val = C(cs1);

let cs2_val = C(cs2);

let cs2_addr = unsigned(cs2_val.address);

let (cs2_base, cs2_top) = getCapBounds(cs2_val);

let permitted = cs2_val.tag

& isCapSealed(cs1_val)

& not(isCapSealed(cs2_val))

& (cs2_addr == unsigned(cs1_val.otype))

& cs2_val.permit_unseal

& (cs2_addr >= cs2_base)

& (cs2_addr < cs2_top);

let new_global = cs1_val.global & cs2_val.global;

let newCap = {unsealCap(cs1_val) with global=new_global};

C(cd) = clearTagIf(newCap, not(permitted));

RETIRE_SUCCESS



Part III

Appendices

127





Appendix A

Version history

0.5 The version released as technical report MSR-TR-2023-6: CHERIoT: Rethinking se-
curity for low-cost embedded systems, February 20231.

0.6 The current, under-development version of the ISA. The following changes have been
made since the previous released version:

Issue 20, PR 26 Capability stores now clear the tag of the stored value instead of
raising an exception in case of a store-local violation (i.e. an attempt to store
a non-global capability via a capability without the store-local permission).
Tag clearing is preferable for software because it removes the possibility of
a trap when copying untrusted inputs. It is also likely easier to implement
in hardware. The capability exception code that was previously used for this
(0x16) is now reserved.

PR 33 The relocations for auicgp and auipcc are unified and the CHERIoT-specific
relocations are now named with CHERIOT, rather than CHERI, as the prefix.

Issue 23, Issue 18, PR 37 Jumps and branches no longer include bounds checks.
Instead, any PCC bounds error will be detected on the subsequent instruction
fetch at the target. To avoid problems with unrepresentable capabilities the tag
of the value stored in EPCC is cleared for instruction fetch bounds exceptions.

Issue 30, PR 37 Validate MEPCC and MTCC on write. If either of these is written
with a sealed or non-executable capability then the tag is cleared. If the least
significant bit of MEPCC.address is set on write then it is cleared and the tag
is cleared. If either of the two least significant bits of MTCC.address is set
on write then they are cleared and the tag is cleared. This simplifies both ISA
and hardware and avoids potential violations of capability monotonicity due to
mtvec and mepc legalization. vectored interrupt mode is explicitly unsupported.

1https://aka.ms/cheriot-tech-report

129

https://github.com/microsoft/cheriot-sail/issues/20
https://github.com/microsoft/cheriot-sail/pull/26
https://github.com/microsoft/cheriot-sail/pull/33
https://github.com/microsoft/cheriot-sail/issues/23
https://github.com/microsoft/cheriot-sail/issues/18
https://github.com/microsoft/cheriot-sail/pull/37
https://github.com/microsoft/cheriot-sail/issues/30
https://github.com/microsoft/cheriot-sail/pull/37
https://aka.ms/cheriot-tech-report


130 APPENDIX A. VERSION HISTORY

PR 38 Fix reversed T and B fields in the capability encoding diagram (Figure 7.2).
There was an inconsistency between the Sail implementation and this docu-
ment about the locations of the T and B fields in the capability encoding. The
document had the T and B fields swapped compared to the Sail (which matches
the Ibex implementation) so we treat the Sail as canonical and update the doc-
ument to match i.e. B is in bits 0 to 8 of the metadata word and T is in 9 to
17.

PR 44 Fix two long-standing nits regarding transitive permissions:
Issue 13 If we clear the tag on a loaded capability because the authority lacks

PERMIT_LOAD_STORE_CAPABILITY, we do not also attenuate the loaded
capability’s permissions as per PERMIT_LOAD_GLOBAL and PERMIT_LOAD_-
MUTABLE, as the result is an untagged bit pattern anyway. The old behav-
ior may have been confusing to humans or debuggers.

Issue 14 When loading a sealed capability through an authority lacking PER-
MIT_LOAD_GLOBAL, the loaded capability will lack GLOBAL but will re-
tain PERMIT_LOAD_GLOBAL if present under seal. This is more in line
with our handling of PERMIT_LOAD_MUTABLE, which does not modify
sealed capabilities. Software accepting sealed capabilities must be pre-
pared to receive local (that is, GLOBAL-lacking) variants, even if none were
ever explicitly constructed.

Issue 15, PR 49 Document stack high water mark. Make it explicitly 16-byte aligned
and point out the unaligned write spanning mshwmb corner case, which we do
not require hardware to handle.

PR 54 Create backward sentries for function returns and add more checks in CJAL
Because CHERIoT allows manipulating the status of the interrupt through a
function call (and function return) by encoding the interrupt type in the otype,
the following attack can occur: A caller calling an interrupt-disabling callee
can set the return sentry of the callee to the same callee. This means, the
callee will call itself on return all the while operating with interrupts disabled.
This will lead to infinite repeated calls to the callee with interrupts disabled,
violating availability. This attack can be prevented in CHERIoT by adding two
new “backwards-edge” sentries and adding more checks on CJALR.

PR 64 Attempting to store a “backwards-edge” sentry through an authorizing cap
lacking PERMIT_STORE_LOCAL_CAPABILITY will clear the tag of the stored
value. This enables the RTOS to confine “backwards-edge” sentries to the
stack and register spill area.

https://github.com/microsoft/cheriot-sail/pull/38
https://github.com/microsoft/cheriot-sail/pull/44
https://github.com/microsoft/cheriot-sail/issues/13
https://github.com/microsoft/cheriot-sail/issues/14
https://github.com/microsoft/cheriot-sail/issues/15
https://github.com/microsoft/cheriot-sail/pull/49
https://github.com/microsoft/cheriot-sail/pull/54
https://github.com/microsoft/cheriot-sail/pull/64


Appendix B

Sail listings for capability encoding

This chapter contains Sail types and functions that implement the capability encoding
scheme.

struct EncCapability = {

reserved : bits(1),

cperms : bits(cap_cperms_width),

cotype : bits(cap_cotype_width),

cE : bits(cap_cE_width),

T : bits(cap_mantissa_width),

B : bits(cap_mantissa_width),

address : bits(cap_addr_width)

}

struct Capability = {

tag : bool,

perm_user0 : bool,

permit_seal : bool,

permit_unseal : bool,

permit_execute : bool,

access_system_regs : bool,

permit_load_store_cap : bool,

permit_load : bool,

permit_store_local_cap : bool,

permit_load_mutable : bool,

permit_store : bool,

permit_load_global : bool,

global : bool,

reserved : bits(1),

131



132 APPENDIX B. SAIL LISTINGS FOR CAPABILITY ENCODING

E : bits(cap_E_width),

B : bits(cap_mantissa_width),

T : bits(cap_mantissa_width),

otype : bits(cap_otype_width),

address : bits(cap_addr_width)

}

function encCapabilityToCapability(t,c) : (bool, EncCapability) -> Capability =

{

var perm_user0 : bool = false;

var permit_seal : bool = false;

var permit_unseal : bool = false;

var permit_execute : bool = false;

var access_system_regs : bool = false;

var permit_load_store_cap : bool = false;

var permit_load : bool = false;

var permit_store_local_cap : bool = false;

var permit_load_mutable : bool = false;

var permit_store : bool = false;

var permit_load_global : bool = false;

var global : bool = bit_to_bool(c.cperms[5]);

var isExe : bool = false;

match c.cperms[4..0] {

0b11 @ [SL, LM, LG] => {

/* mem-rw-cap format */

permit_load = true;

permit_load_store_cap = true;

permit_store = true;

permit_store_local_cap = bit_to_bool(SL);

permit_load_mutable = bit_to_bool(LM);

permit_load_global = bit_to_bool(LG);

},

0b101 @ [LM, LG] => {

/* mem-ro-cap format */

permit_load = true;

permit_load_store_cap = true;

permit_load_mutable = bit_to_bool(LM);

permit_load_global = bit_to_bool(LG);

},

0b10000 => {

/* mem-wo-cap */



133

permit_store = true;

permit_load_store_cap = true;

},

0b100 @ [LD, SD] => {

/* mem-data */

permit_load = bit_to_bool(LD);

permit_store = bit_to_bool(SD);

},

0b01 @ [SR, LM, LG] => {

/* Executable format */

isExe = true;

permit_execute = true;

permit_load = true;

permit_load_store_cap = true;

access_system_regs = bit_to_bool(SR);

permit_load_mutable = bit_to_bool(LM);

permit_load_global = bit_to_bool(LG);

},

0b00 @ [U0, SE, US] => {

/* Sealing format */

perm_user0 = bit_to_bool(U0);

permit_seal = bit_to_bool(SE);

permit_unseal = bit_to_bool(US);

}

};

/* The otype of executable caps is mapped to 1-7 and others to 9-15. Unsealed

is always 0. */

let otype = (if isExe | c.cotype == 0b000 then 0b0 else 0b1) @ c.cotype;

/* The 4-bit exponent is expanded to 5 bits, using 0xf to encode a cap_max_E

value that enables representing the entire address space. */

let E = if c.cE == 0xf then cap_max_E_bits else zero_extend(c.cE);

return struct {

tag = t,

perm_user0 = perm_user0 ,

permit_seal = permit_seal ,

permit_unseal = permit_unseal ,

permit_execute = permit_execute ,

access_system_regs = access_system_regs ,

permit_load_store_cap = permit_load_store_cap ,

permit_load = permit_load ,

permit_store_local_cap = permit_store_local_cap,



134 APPENDIX B. SAIL LISTINGS FOR CAPABILITY ENCODING

permit_load_mutable = permit_load_mutable ,

permit_store = permit_store ,

permit_load_global = permit_load_global ,

global = global ,

reserved = c.reserved,

E = E,

B = c.B,

T = c.T,

otype = otype,

address = c.address

}

}

function capToEncCap(cap) : Capability -> EncCapability = {

var cperms : bits(cap_cperms_width) = zeros();

cperms[5] = bool_to_bit(cap.global);

if cap.permit_execute & cap.permit_load & cap.permit_load_store_cap then {

/* Executable format */

cperms[4..3] = 0b01;

cperms[2] = bool_to_bit(cap.access_system_regs);

cperms[1] = bool_to_bit(cap.permit_load_mutable);

cperms[0] = bool_to_bit(cap.permit_load_global);

} else if cap.permit_load & cap.permit_load_store_cap & cap.permit_store then

{

/* mem cap-rw */

cperms[4..3] = 0b11;

cperms[2] = bool_to_bit(cap.permit_store_local_cap);

cperms[1] = bool_to_bit(cap.permit_load_mutable);

cperms[0] = bool_to_bit(cap.permit_load_global);

} else if cap.permit_load & cap.permit_load_store_cap then {

/* mem cap-ro */

cperms[4..2] = 0b101;

cperms[1] = bool_to_bit(cap.permit_load_mutable);

cperms[0] = bool_to_bit(cap.permit_load_global);

} else if cap.permit_store & cap.permit_load_store_cap then {

/* mem cap-wo */

cperms[4..0] = 0b10000;

} else if cap.permit_load | cap.permit_store then {

/* mem rw data */

cperms[4..2] = 0b100;

cperms[1] = bool_to_bit(cap.permit_load);



135

cperms[0] = bool_to_bit(cap.permit_store);

} else {

/* Sealing format */

cperms[4..3] = 0b00;

cperms[2] = bool_to_bit(cap.perm_user0);

cperms[1] = bool_to_bit(cap.permit_seal);

cperms[0] = bool_to_bit(cap.permit_unseal);

};

return struct {

cperms = cperms,

reserved = cap.reserved,

cotype = cap.otype[2..0], /* truncate otype when compressing */

cE = if cap.E == cap_max_E_bits then 0xf else cap.E[3..0],

T = cap.T,

B = cap.B,

address = cap.address

};

}

function getCapBoundsBits(c) : Capability -> (CapAddrBits, CapLenBits) = {

let E = unsigned(c.E);

let a : CapAddrBits = c.address;

/* Calculate corrections for upper bits of base and top based on relative

positions of base, top and address with respect to

2**(E+cap_mantissa_width) aligned regions */

let a_mid = truncate(a >> E, cap_mantissa_width);

/* If a_mid is less than B then a must be in region above base */

let a_hi = if a_mid <_u c.B then 1 else 0;

/* If T is less than B then top must be in region above base */

let t_hi = if c.T <_u c.B then 1 else 0;

/* If address is in region above base then we need to subtract one from a_top

to get top bits of base */

let c_b = 0 - a_hi;

/* The correction for top can be -1, 0, or 1 depending on whether a and t lie

in the same region and, if not, which is in the high region. This boils

down

to a subtraction. */

let c_t = t_hi - a_hi;

let a_top = a >> (E + cap_mantissa_width);

/* Finally reconstruct the base and top using the corrections and truncate.

*/



136 APPENDIX B. SAIL LISTINGS FOR CAPABILITY ENCODING

let base : CapAddrBits = truncate((a_top + c_b) @ c.B @ zeros(E),

cap_addr_width);

let top : CapLenBits = truncate((a_top + c_t) @ c.T @ zeros(E),

cap_len_width);

(base, top)

}

function setCapBounds(cap, base, length) : (Capability, CapAddrBits,

CapAddrBits) -> (bool, Capability) = {

let ext_base = 0b0 @ base;

/* Compute new top, note extra bit in case of overflow */

let top : CapLenBits = ext_base + (0b0 @ length);

/* Find smallest exponent that can represent required length.

*/

let e : range(0, 23) = 23 - count_leading_zeros(truncateLSB(length, 23));

/* Saturate e at max if it exceeds representable 4-bit value. */

var e_sat : range(0, cap_max_E) = if e > 14 then cap_max_E else e;

/* Extract B and T bits from base and top, include a spare bit so that we can

check for length overflow below. */

var B = truncate(base >> e_sat, cap_mantissa_width + 1);

var T = truncate(top >> e_sat, cap_mantissa_width + 1);

/* Work out whether we have lost significant bits in top */

var maskLo : CapLenBits = zero_extend(ones(e_sat));

lostSignificantTop = unsigned(top & maskLo) != 0;

if lostSignificantTop then {

/* we must increment T to make sure it is still above top even with lost

bits */

T = T + 1;

};

/* If the resulting length is greater than maximum possible, we must

increment e by one and try again. This time overflow is impossible. */

if 0b0111111111 <_u (T - B) then {

if e_sat < 14 then {

/* increment e_sat by one, note that min is only necessary to satisfy the

Sail type checker */

e_sat = min(e_sat + 1, cap_max_E);

} else {

e_sat = cap_max_E;

};

/* Recompute B, T, mask etc for new e_sat */



B.1. SMT VALIDATION OF PROPERTIES OF THE CAPABILITY ENCODING 137

B = truncate(base >> e_sat, cap_mantissa_width + 1);

T = truncate(top >> e_sat, cap_mantissa_width + 1);

maskLo = zero_extend(ones(e_sat));

lostSignificantTop = unsigned(top & maskLo) != 0;

if lostSignificantTop then {

T = T + 1;

};

};

/* Return cap with new bounds */

let encE = to_bits(cap_E_width, e_sat);

let newCap = {cap with address=base, E=encE, B=truncate(B, cap_mantissa_width

), T=truncate(T, cap_mantissa_width)};

lostSignificantBase = unsigned(ext_base & maskLo) != 0;

let exact = not(lostSignificantBase | lostSignificantTop);

(exact, newCap)

}

function getRepresentableAlignmentMask(len) = {

let (exact, c) = setCapBounds(root_cap_mem, to_bits(sizeof(xlen), 0), len);

var e = unsigned(c.E);

ones(sizeof(xlen)) << e

}

function getRepresentableLength(len) = {

let m = getRepresentableAlignmentMask(len);

(len + ~(m)) & m

}

B.1 SMT validation of properties of the capability encod-
ing

The Sail compiler can translate Sail code into a Satisfiability Modulo Theories (SMT)
problem that can be given to a solver such as CVC4 or Z3 to check whether a given
function returns true for all input values. We have used this to check important properties
of the capability encoding as implemented in Sail.
Some helper functions are used in the Sail properties:

function encodeDecode(c : Capability) -> Capability = capBitsToCapability(c.

tag, capToBits(c))

function capEncodable(c : Capability) -> bool = c == encodeDecode(c)



138 APPENDIX B. SAIL LISTINGS FOR CAPABILITY ENCODING

The following functions have been checked to return true for all inputs.

function prop_decEnc(t : bool, c : CapBits) -> bool = {

let cap = capBitsToCapability(t, c);

let b = capToBits(cap);

(c == b) & (cap.tag == t)

}

function prop_andperms(b : CapBits, mask : CapPermsBits) -> bool = {

let c = capBitsToCapability(false, b);

let perms = getCapPerms(c);

let newCap = setCapPerms(c, perms & mask);

/* We must encode then decode the resulting Capability to see the effect

* of permissions compression. */

let newCap2 = encodeDecode(newCap);

let newPerms = getCapPerms(newCap2);

/* Check that newperms are a subset of original perms and requested perms

*/

((newPerms & ~(perms)) == zeros()) & ((newPerms & ~(mask)) == zeros())

}

function prop_setbounds(reqBase : CapAddrBits, reqLen : CapAddrBits) -> bool =

{

let (exact, c) = setCapBounds(root_cap_mem, reqBase, reqLen);

let encodable = capEncodable(c);

let (b2, t2) = getCapBoundsBits(c);

let reqTop = (0b0 @ reqBase) + (0b0 @ reqLen);

let saneTop = reqTop <=_u 0b1@0x00000000;

saneTop --> (

encodable &

(c.address == reqBase) &

((exact & (reqBase == b2) & (reqTop == t2))

| (not(exact) & (b2 <=_u reqBase) & (reqTop <=_u t2)))

)

}

function prop_setbounds_monotonic(

reqBase1 : CapAddrBits, reqLen1 : CapAddrBits,

reqBase2 : CapAddrBits, reqLen2 : CapAddrBits) -> bool = {

let (exact1, c1) = setCapBounds(root_cap_mem, reqBase1, reqLen1);

let (b1, t1) = getCapBoundsBits(c1);

let reqTop1 = (0b0 @ reqBase1) + (0b0 @ reqLen1);

let saneTop1 = reqTop1 <=_u 0b1@0x00000000;



B.1. SMT VALIDATION OF PROPERTIES OF THE CAPABILITY ENCODING 139

let reqTop2 = (0b0 @ reqBase2) + (0b0 @ reqLen2);

let saneTop2 = reqTop2 <=_u 0b1@0x00000000;

let (exact2, c2) = setCapBounds(c1, reqBase2, reqLen2);

let (b2, t2) = getCapBoundsBits(c2);

let requestMonotonic = (b1 <=_u reqBase2) & (reqTop2 <=_u t1);

let resultMonotonic = (b1 <=_u b2) & (t2 <=_u t1);

(saneTop1 & saneTop2 & requestMonotonic) --> resultMonotonic

}

function prop_setaddr(reqBase : CapAddrBits, reqLen : CapAddrBits, newAddr :

CapAddrBits) -> bool = {

let (exact, c) = setCapBounds(root_cap_mem, reqBase, reqLen);

let (representable, newCap) = setCapAddr(c, newAddr);

let boundsEqual = capBoundsEqual(c, newCap);

representable <--> boundsEqual

}

function prop_repbounds_c(reqBase : CapAddrBits, reqLen : CapAddrBits, newAddr

: CapAddrBits) -> bool = {

let (exact, c) = setCapBounds(root_cap_mem, reqBase, reqLen);

let reqTop = (0b0 @ reqBase) + (0b0 @ reqLen);

let saneTop = reqTop <=_u 0b1@0x00000000;

let (b, t) = getCapBoundsBits(c);

let (representable, newCap) = setCapAddr(c, newAddr);

let inCBounds = (b <=_u newAddr) & ((0b0 @ newAddr) <=_u t);

(saneTop & inCBounds) --> representable

}

function prop_repbounds(reqBase : CapAddrBits, reqLen : CapAddrBits, newAddr :

CapAddrBits) -> bool = {

let (exact, c) = setCapBounds(root_cap_mem, reqBase, reqLen);

let reqTop = (0b0 @ reqBase) + (0b0 @ reqLen);

let saneTop = reqTop <=_u 0b1@0x00000000;

let (b, t) = getCapBoundsBits(c);

let (representable, newCap) = setCapAddr(c, newAddr);

let repTop = (0b0 @ b) + ((to_bits(33,1) << unsigned(c.E)) << 9);

/* The representable bounds check: either E is max or address is in range

*/

let inRepBounds = c.E == cap_max_E_bits | ((b <=_u newAddr) & ((0b0 @

newAddr) <_u repTop));

/* For any sane capability the inRepBounds check matches the flag returned

by setCapAddr () */

saneTop --> (inRepBounds <--> representable)



140 APPENDIX B. SAIL LISTINGS FOR CAPABILITY ENCODING

}

function prop_crrl_cram(reqBase : CapAddrBits, reqLen : CapAddrBits) -> bool =

{

let mask = getRepresentableAlignmentMask(reqLen);

let reqTop = (0b0 @ reqBase) + (0b0 @ reqLen);

let saneTop = reqTop <=_u 0b1@0x00000000;

let newBase = reqBase & mask;

let newLen = getRepresentableLength(reqLen);

let (exact, c) = setCapBounds(root_cap_mem, newBase, newLen);

(saneTop & ((reqLen == zeros()) | (newLen != zeros())))-->

(exact & reqLen <=_u newLen)

}



Appendix C

Permission compression rationale

To devise the permission compression scheme we initially observed a number of con-
straints on the useful permissions combinations:

MC → (LD ∨ SD) Capability read / write is not useful without a
load or store permission.

LG → (MC ∧ LD) Load global requires load capability.
LM → (MC ∧ LD) Load mutable requires load capability.
SL → (MC ∧ SD) Store local requires store capability.

SR → EX Access system registers only applies to exe-
cutable capabilities.

EX → (MC ∧ LD) Executable capabilities require load capability
for global access.

¬(EX ∧ SD) Executable capabilities should not be writable,
to enhance security.

¬((SE ∨ US ∨ U0) ∧ (LD ∨ SD)) Memory permissions should be disjoint from
sealing permissions due to separate namespaces.

If we apply all of these constraints we find there are only 33 useful permission combi-
nations (excluding the global bit, which we take to be orthogonal). Eliminating just one
of these combinations allows us to encode them using a 5-bit encoding. We see limited
uses for write-only capabilities outside MMIO, so we chose write-only store-local as the
least useful combination, leading to the encoding described in Section 7.13.1. This may
be reassessed once we have a clearer picture of use cases for write-only capabilities.

141



142 APPENDIX C. PERMISSION COMPRESSION RATIONALE



Appendix D

Potential revised bound encoding

Here we describe some possible improvements to bounds encoding described in Sec-
tion 7.13.3. In particular we seek to get a more efficient encoding (greater precision, fewer
unusable encodings), and to reduce the complexity of the set bounds operation without
using any more bits or excessive hardware complexity. The proposed encoding is a minor
alteration to the existing one based on two observations:

1. That incrementing T in the set bounds operation would not be necessary if the lower
e bits of top were decoded as ones, instead of zeros.

2. That zero length capabilities are of little use, and potentially even harmful (see Sec-
tion 7.13.7)

As such we consider revising the existing bounds decoding as follows (note ones instead
of zeros in low bits of top):

address, a = atop = a[31 : e+ 9] amid = a[e+ 8 : e] alow = a[e− 1 : 0]

base, b = atop + cb B 0

top, t = atop + ct T 1 . . . 1

and further redefine the decoded top to be an inclusive bound instead of exclusive. The
corrections cb and ct remain the same. This has a number of consequences:

• The set bounds implementation no longer has to increment the value of T if the
requested top is not exactly represented because the decoding naturally rounds up as
desired. This may slightly simplify the implementation.

• The smallest length encodable for a given e is 2e (when B = T ). Zero length
capabilities are no longer supported.

143



144 APPENDIX D. POTENTIAL REVISED BOUND ENCODING

• The largest length encodable for a given e is 2e+9 (when T −B = 29− 1). However
in this case the representable range is equal to the dereferenceable range, so it may
be necessary to limit the maximum value of T −B to 29−2. This would ensure that
‘one past the end’ remains within representable range, but would make the maximum
usable length 511 ∗ 2e, which is the same as the current encoding.

• Bounds can be set to the entire address space using B = 0, T = 29 − 1, e = 23.
This means the maximum exponent is smaller by one and therefore the worst case
granularity is now 223, or 8 MiB instead of 16 MiB.

To retain software compatibility we do not propose to change the architectural definition
of top, therefore CGetLen would have to take account of the inclusive top value (possibly
by adding one to the result) and CSetBounds would have to subtract one from the requested
length prior to encoding. Other instructions will have to adjust bounds checks accordingly.
We have not yet fully evaluated this encoding to see if it is an overall improvement, but
include it here for consideration.



Appendix E

Proposed compressed instruction
encoding changes

Section 7.14 introduces changes to map certain compressed instructions to their CHERI
counterparts, without changing the encoding of compressed instructions themselves. This
brings minimum changes to the instruction decoder of an existing RISC-V CPU. However,
further code size reduction can be achieved if we take advantage of the extra register index
bits freed up by RV32E, or if we drastically redesign certain encodings in C extension
entirely.

E.1 Compressed CMove and CIncAddr

The compiler generates CMove and mv to copy registers for capabilities and integers respec-
tively. While mv has a compressed c.mv counterpart, CMove does not. Move instructions are
often used to shuffle registers among argument, temporary and callee-saved registers for
function calls, taking a significant proportion of the code size.
We take advantage of the freed bits from RV32E and use one bit to differentiate between
c.CMove and c.mv. Initial code size investigations show a reduction of 5%, which is signif-
icant. An alternative for c.CMove is to conflate c.CMove with c.mv, which requires no extra
bits from RV32E. However, implications of this conflation on ABI, architectural state and
compiler have not been investigated.
Similarly, the extra bit in c.addi can encode c.CIncAddr. The benefit of a c.CIncAddr is
less significant, at around 1-2%.

145



146APPENDIX E. PROPOSED COMPRESSED INSTRUCTION ENCODING CHANGES

E.2 Three-operand compressed instructions
Currently, RISC-V compressed instructions take at most two operands, with certain in-
structions having full 5-bit register indices to address all 32 registers. Initial prototyping
suggests that sacrificing the ability to address all registers and reducing immediate ranges
to increase the number of operands gives further code size reduction. Increasing the num-
ber of operands increases the chance of pattern-matching uncompressed instructions with
compressed ones, and the code size reduction outweighs the number of instructions that
can no longer be compressed with a smaller immediate or register index. We currently see
another 1-2% reduction on top of compressed c.CMove and c.CIncAddr. However, this is a
drastic ISA change and needs further investigation for justification.



Appendix F

Standing on the Shoulders of Giants

The CHERIoT design is heavily based on prior work by the CHERI project and its myriad
contributors and collaborators. Our targeted use case differs from those of earlier projects,
so we present a brief tour through the existing landscape.

F.1 CTSRD CHERI, CHERI-RISC-V, Morello, and CheriBSD
The CTSRD project at the Cambridge University Computer Laboratory is the nucleation
point for the growing CHERI ecosystem. The project’s current architecture, as well as de-
tailed rationale and discussion of its historical evolution, can be found in the CHERI ISA
document (version 8, as of this writing) [22]. To summarize, however, its primary (mi-
cro)architectural focus has been on desktop- and server-class multi-core machines; these
modern computers have 64-bit general data paths, Memory Management Units (MMUs)
providing large virtual address spaces, caches, and so on. Its CHERI-RISC-V proposal
extends RV64 specifically; similarly, Arm’s experimental Morello extends 64-bit ARMv8
[3]. Correspondingly, its primary software focus has been on UNIX-like operating sys-
tems, centered around its adaptation of FreeBSD, CheriBSD [6].

F.1.1 Translation vs. Protection
CHERI is, informally, designed to “compose well” with modern (micro)architectures. By
contrast to many prior capability systems, CHERI does not demand additional lookup
tables to interpret its capabilities or define its protection policies. In the desktop/server
space, CHERI sits atop existing MMUs: within a CheriBSD process, CHERI capabilities
are interpreted relative to a MMU translation table. This interpretation continues to benefit
from existing TLB designs.

147



148 APPENDIX F. STANDING ON THE SHOULDERS OF GIANTS

By contrast, embedded systems have generally not had a notion of virtual addresses, con-
ducting all their business using physical addresses as directly presented on a peripheral
bus. As such, there has not been a convenient translation layer to press into service as a
memory protection mechanism. Attempts to add lookup-table based “protection without
translation” to physical memory systems, such as ARM’s MPU [13] and RISC-V’s PMP
[21, §3.6], sit uncomfortably on the critical path for memory. The need to adjudicate ev-
ery operation with a minimum of delay necessitates small tables fit into expensive, fast
(T)CAMs. CHERI capabilities, by contrast, directly carry their permissions and bounds,
obviating the need for tables and CAMs and necessitating only the check that each op-
eration is authorized. Removing the need for tabular storage allows for greater system
flexibility, as authority is now per reference rather than per address, and also removes risk
of a (ephemerally) misconfigured table.

F.2 Incorporated CHERI Extensions
The CHERIoT ISA enshrines into its architecture several as-yet experimental aspects from
the larger CHERI systems.

F.2.1 Multi-Root, Compressed Permission Encodings
The CHERIoT ISA is the first fully-elaborated example of a “multi-root,” compressed
permissions encoding scheme as first proposed in [22, §D.5]. Its three roots capture two
of the suggested splittings: first, memory addresses from sealing types, and second, write
from execute memory access.1

F.2.2 Recursive Permissions
The CHERIoT ISA has two “recursive” permissions (recall Section 7.13.1), borrowing
an idea from many earlier systems. The first such is LM, directly analogous to Morello’s
recursive-load-mutable permission [3, §2.7.4] and the “weak” capabilities of KeyKOS and
Coyotos [7, 10, 19]. A capability lacking LM and yet authorized to load capabilities, by
having both LD (“load”) and MC (“memory capabilities”), will cause both SD and LM
to be stripped from capabilities loaded through it. That is, the capability in the register
file resulting from a load instruction may differ from the capability loaded from memory
by having these permission bits cleared. The other is LG and interacts with the 1-bit

1This latter splitting is often called either “W xor X” (“W^X”), following its introduction in OpenBSD
3.3 [17], or “Data Execution Prevention” (DEP), after Windows XP [11].



F.3. ESSWOOD’S CHERIOS 149

information flow system encoded in the GL (“global”) and SL (“store local”) permissions.
Like lacking LM clears SD and LM, lacking LG clears GL and LG: all capabilities viewed
transitively through a capability without LG appear to be local.

F.2.3 Architectural Seals
The CHERIoT ISA has a richer collection of architecturally-understood sealing types than
the current larger CHERI-RISC-V baseline (see Section 7.13.2). (At the time of writing,
Morello has its own set of additional architectural seals beyond those in CHERI-RISC-V.)
In a future revision of the CHERIoT ISA, sentries will differentiate between forward and
backward arcs, with the former requiring explicit authority to construct (unlike the larger
systems, where the CSealEnter instruction has ambient authority) and the latter being
constructable only as part of a jump.

F.2.4 Capability Load Barrriers and Memory-Capability Versioning
The CHERIoT ISA adapts the larger systems’ MMU-based capability load barriers (CHERI-
RISC-V [22, §5.3.10] and Morello [3, RCPRKD in §2.14]) directly into the processor pipeline
(recall Section 7.8). For this, CHERIoT adds a second metadata bit, in addition to the
CHERI capability tag, to each capability-sized granule. Capabilities whose base refers to
a granule with this second metadata bit asserted are invalid and will have their tag cleared
when loaded into the register file. This behavior can be seen as a “1-color-bit” scaling-
down of the proposed “Memory-Capability Versioning” scheme of CTSRD CHERI [22,
§D.6], which builds on technologies like Arm’s Memory Tagging Extension [14]. How-
ever, CHERIoT has done away with the “version” field within the capability format, as we
found it straightforward for the heap allocator to always internally use capabilities whose
bounds cover the entire heap and, importantly, whose base granule is never made invalid.

F.3 Esswood’s CheriOS
While the CTSRD group’s focus has been largely on UNIX-like software, there have been
deviations over the years. Esswood’s CheriOS [8] describes a green-field microkernel
operating system that presumes a CHERI ISA. The entire system, OS and user programs
alike, run in the same single-address-space; the MMU is used for page mapping tricks, but
all software perceives the same address space (albeit through different capabilities). Like
the CHERIoT RTOS, CheriOS is ringless; the traditional separation of a more-privileged
supervisor operating over a less-privileged userspace is no more. The core Trusted Com-
puting Base for CheriOS, analogous to the CHERIoT RTOS’s switch routines, consists of



150 APPENDIX F. STANDING ON THE SHOULDERS OF GIANTS

fewer than 2700 CHERI-MIPS instructions. Both systems move functionality traditionally
placed in inner rings out to minimally-privileged compartments.
CheriOS software is generally composed of a number of libraries linked together; link-
age policy articulates the trust relationships between callers and callees, offering all of
mutually-trusting, sandbox, safebox, and mutually-distrusting call relationships. The CHERIoT
RTOS also relies on linkage to define a capability graph, but it offers fewer flavors of cross-
compartment calls (most calls are mutually-distrusting with library calls being a minimal
safebox).
CheriOS offers full memory safety for C/C++ programs. As expected, CHERI provides
integrity and monotonicity, and the memory allocators and compiler-generated code in-
sert bounding instructions where appropriate for spatial safety. CheriOS achieves heap
and stack temporal safety by exploiting the large address spaces of server-class machines.
Heap temporal safety is achieved in the TCB by a combination of take-once “reservations”
of address space and quarantining released virtual address space. A hardware barrier
added to CHERI-MIPS facilitates revoking capabilities pointing into a large contiguous
region of released address space, which the TCB may then recycle for new reservations.
Stack temporal safety builds atop heap temporal safety, with the compiler arranging to
construct “slinky stacks” [8, §4.1] that do not reuse possibly-escaped stack allocations’
address space. When a segment of a slinky stack has too little usable address space, it
is recycled as heap memory and another large heap allocation is made to provide a fresh
segment. The CHERIoT RTOS, by contrast, must operate on physical addresses and so
builds its heap temporal safety using additional CHERIoT ISA metadata and its slightly
weaker notion of stack temporal safety using the store-local permission.

F.4 Xia’s CheriRTOS

Similarly, there have been efforts within the CTSRD group to explore CHERI in smaller
hardware. Xia (also an author of this report) developed, for his Ph.D. thesis, CheriRTOS
[24, 25]. CheriRTOS introduces the first 64-bit CHERI capability encodings (for 32-bit
address spaces) and explores its implementation in a derivative of CHERI-MIPS. The ca-
pability scheme used here was largely a straightforward scaling-down of CTSRD’s server-
oriented CHERI. While it was an important and admirable proof of concept, its deficien-
cies, especially with bounds precision and the large number of bits still devoted to permis-
sions, significantly motivated the development of the CHERIoT ISA capability format.
CheriRTOS, like many RTOSes before it, takes a task-centric perspective on the world,
pairing together threads and their associated data and relying on inter-task communi-
cation when work requires access to multiple tasks’ state. Being the first of its kind,



F.5. ALMATARY’S COMPARTOS AND CHERIFREERTOS 151

CheriRTOS is focused on aspects of cross-compartment invocation and allocator security;
tasks are manually-specified concepts and are compiled with only a limited understand-
ing of CHERI capabilities.2 It then uses CHERI mechanisms to provide task isolation.
By contrast, the CHERIoT RTOS decomposes computations (threads and their runtime
stacks) from persistent resources (compartments and their associated globals and import
tables), allowing threads to enter and exit different compartments, as needed.

F.5 Almatary’s CompartOS and CheriFreeRTOS
Almatary’s Ph.D. thesis develops the “CompartOS” software model [2] and instantiates
it with an adaptation of FreeRTOS, called CheriFreeRTOS [1]. The Trusted Computing
Base for CompartOS is its secure dynamic code loader. The unit of compartmentaliza-
tion is, as in the CHERIoT RTOS, a linkage unit rather than a task (though the CHERIoT
RTOS provides only static code loading). CompartOS includes compartment availability
in its design objectives, and so offers a multitude of fault-handling mechanisms, includ-
ing per-compartment trap handlers and forced stack unwinds as offered in the CHERIoT
RTOS. However, while CompartOS is a flexible model, the concrete CheriFreeRTOS does
not consider temporal memory safety to be in scope; it lacks a mechanism for capability
revocation and does not scrub stacks on compartment switches.
CheriFreeRTOS was used in an extensive evaluation which explored the relative costs and
security of both task- and linkage-based compartmentalization models atop both CHERI-
and MPU/PMP-enabled ISAs [1, §5]. This evaluation found that, while the microarchi-
tectural area costs of CHERI and PMPs (and MMUs) were similar, the security benefits
of CHERI were “unparalleled” and came with lower runtime cost than comparably-secure
MPU/PMP-based approaches. Further, the cost of adapting FreeRTOS to the CompartOS
model was found to be minimal, with many applications requiring no source-level changes.

2Specifically, task C/C++ code is compiled in a “hybrid” mode, where pointers lower to integers unless
a capability is explicitly requested. These integers are interpreted relative to an architectural capability
register, either the program counter (for relative control transfers or PC-relative loads) or a “default data
capability” (“DDC,” which interposes legacy integer-based load and store instructions) [22, §2.3.12]. The
CHERIoT ISA does not have these legacy instructions or DDC; all CHERIoT RTOS code is expected to be
compiled “purecap,” with all pointers always lowered to capabilities.



152 APPENDIX F. STANDING ON THE SHOULDERS OF GIANTS



Bibliography

[1] H. Almatary. ‘CHERI compartmentalisation for embedded systems’. PhD thesis.
University of Cambridge, Computer Laboratory, Nov. 2022. DOI: 10.48456/tr-
976. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-976.pdf.

[2] H. Almatary, M. Dodson, J. Clarke, P. Rugg, I. Gomes, M. Podhradsky, P. G. Neu-
mann, S. W. Moore and R. N. M. Watson. ‘CompartOS: CHERI Compartmental-
ization for Embedded Systems’. In: (2022). URL: https://arxiv.org/abs/2206.
02852.

[3] Arm Architecture Reference Manual Supplement: Morello for A-profile Architec-
ture. Version A.k. Arm Limited. 2020. URL: https : / / developer . arm . com /
documentation/ddi0606/latest.

[4] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M. Norton, P.
Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark, N. Krishnaswami and
P. Sewell. ‘ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS’. In: POPL
2019: Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages. Jan. 2019. DOI: 10.1145/3290384.

[5] Capability Hardware Enhanced RISC Instructions. CTSRD-CHERI/sail-cheri-riscv:
CHERI-RISC-V model written in Sail. URL: https://github.com/CTSRD-CHERI/
sail-cheri-riscv.

[6] B. Davis, R. N. M. Watson, A. Richardson, P. G. Neumann, S. W. Moore, J. Bald-
win, D. Chisnall, J. Clarke, N. W. Filardo, K. Gudka, A. Joannou, B. Laurie, A. T.
Markettos, J. E. Maste, A. Mazzinghi, E. T. Napierala, R. M. Norton, M. Roe, P.
Sewell, S. Son and J. Woodruff. ‘CheriABI: Enforcing Valid Pointer Provenance
and Minimizing Pointer Privilege in the POSIX C Run-Time Environment’. In: Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS 2019 (Providence,
RI, USA). ACM, Apr. 2019, pp. 379–393. DOI: 10.1145/3297858.3304042. URL:

153

https://doi.org/10.48456/tr-976
https://doi.org/10.48456/tr-976
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-976.pdf
https://arxiv.org/abs/2206.02852
https://arxiv.org/abs/2206.02852
https://developer.arm.com/documentation/ddi0606/latest
https://developer.arm.com/documentation/ddi0606/latest
https://doi.org/10.1145/3290384
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://doi.org/10.1145/3297858.3304042


154 BIBLIOGRAPHY

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-

asplos-cheriabi.pdf.

[7] M. S. Doerrie. ‘Confidence in Confinement: An Axiom-free, Mechanized Verifica-
tion of Confinement in Capability-based Systems’. PhD thesis. Johns Hopkins Uni-
versity, 2015. URL: http://www.doerrie.us/assets/doerrie-dissertation-
jhu.pdf.

[8] L. G. Esswood. ‘CheriOS: designing an untrusted single-address-space capability
operating system utilising capability hardware and a minimal hypervisor’. PhD the-
sis. University of Cambridge, Computer Laboratory, Sept. 2021. DOI: 10.48456/
tr-961. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf.

[9] N. W. Filardo, B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-Trifu, B. Davis, H.
Xia, E. T. Napierala, A. Richardson, J. Baldwin, D. Chisnall, J. Clarke, K. Gudka,
A. Joannou, A. T. Markettos, A. Mazzinghi, R. M. Norton, M. Roe, P. Sewell, S.
Son, T. M. Jones, S. W. Moore, P. G. Neumann and R. N. M. Watson. ‘Cornucopia:
Temporal Safety for CHERI Heaps’. In: Proceedings of the 41st IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, May 2020, pp. 1507–1524.
DOI: 10.1109/SP40000.2020.00098. URL: https://www.cl.cam.ac.uk/
research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf.

[10] N. Hardy. ‘KeyKOS architecture’. In: SIGOPS Operating Systems Review 19.4
(1985), pp. 8–25. DOI: 10.1145/858336.858337.

[11] M. Inc. Data Execution Prevention - Win32 apps. URL: https://learn.microsoft.
com/en-us/windows/win32/memory/data-execution-prevention.

[12] LF Projects, LLC. seL4 FAQ. https://www.sel4.systems/Info/FAQ/proof.pml.
2023.

[13] A. Limited. Armv8-M Memory Model and Memory Protection User Guide. URL:
https://developer.arm.com/documentation/107565/0100/.

[14] A. Limited. Armv8.5-A Memory Tagging Extension White Paper. URL: https://
developer.arm.com/documentation/102925/0100/.

[15] Microsoft. CHERIoT ISA model written in Sail. URL: https : / / github . com /
microsoft/cheriot-sail.

[16] Microsoft. CHERIoT RTOS. URL: https://github.com/microsoft/cheriot-
rtos.

[17] T. de Raadt. OpenBSD 3.3. URL: https://www.openbsd.org/33.html.

[18] REMS Project. Sail Language. https://www.cl.cam.ac.uk/~pes20/sail/.
2018.

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
http://www.doerrie.us/assets/doerrie-dissertation-jhu.pdf
http://www.doerrie.us/assets/doerrie-dissertation-jhu.pdf
https://doi.org/10.48456/tr-961
https://doi.org/10.48456/tr-961
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-961.pdf
https://doi.org/10.1109/SP40000.2020.00098
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf
https://doi.org/10.1145/858336.858337
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://www.sel4.systems/Info/FAQ/proof.pml
https://developer.arm.com/documentation/107565/0100/
https://developer.arm.com/documentation/102925/0100/
https://developer.arm.com/documentation/102925/0100/
https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-sail
https://github.com/microsoft/cheriot-rtos
https://github.com/microsoft/cheriot-rtos
https://www.openbsd.org/33.html
https://www.cl.cam.ac.uk/~pes20/sail/


BIBLIOGRAPHY 155

[19] J. S. Shapiro and J. W. Adams. Coyotos Microkernel Specification. Version 0.6+.
10th Sept. 2007. URL: https://web.archive.org/web/20160904092954/http:
//www.coyotos.org:80/docs/ukernel/spec.html.

[20] A. Waterman and K. Asanović, eds. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Version 2.2. May 2017. URL: https://content.riscv.org/wp-
content/uploads/2017/05/riscv-spec-v2.2.pdf.

[21] A. Waterman and K. Asanović, eds. The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture, Version 1.10. May 2017. URL: https://content.riscv.
org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf.

[22] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary, J. Anderson,
J. Baldwin, D. Chisnall, J. Clarke, B. Davis, N. W. Filardo, A. Joannou, B. Laurie,
A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis, R. Norton, A. Richard-
son, P. Rugg, P. Sewell, S. Son and H. Xia. Capability Hardware Enhanced RISC In-
structions: CHERI Instruction-Set Architecture (Version 8). Tech. rep. UCAM-CL-
TR-951. University of Cambridge, Computer Laboratory, Sept. 2020. URL: https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf.

[23] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. Norton, T. Baureiss, D. Chisnall, B.
Davis, K. Gudka, N. W. Filardo, A. T. Markettos, M. Roe, P. G. Neumann, R. N. M.
Watson and S. W. Moore. ‘CHERI Concentrate: Practical Compressed Capabili-
ties’. In: IEEE Transactions on Computers 68.10 (Oct. 2019), pp. 1455–1469. DOI:
10.1109/TC.2019.2914037. URL: https://www.cl.cam.ac.uk/research/
security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf.

[24] H. Xia. ‘Capability memory protection for embedded systems’. PhD thesis. Univer-
sity of Cambridge, Computer Laboratory, Feb. 2021. DOI: 10.48456/tr-955. URL:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-955.pdf.

[25] H. Xia, J. Woodruff, H. Barral, L. Esswood, A. Joannou, R. Kovacsics, D. Chis-
nall, M. Roe, B. Davis, E. Napierala, J. Baldwin, K. Gudka, P. G. Neumann, A.
Richardson, S. W. Moore and R. N. M. Watson. ‘CheriRTOS: A Capability Model
for Embedded Devices’. In: 2018 IEEE 36th International Conference on Com-
puter Design (ICCD). 2018 IEEE 36th International Conference on Computer De-
sign (ICCD). IEEE, Oct. 2018, pp. 92–99. DOI: 10.1109/ICCD.2018.00023. URL:
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201810-

iccd2018-cheri-rtos.pdf.

https://web.archive.org/web/20160904092954/http://www.coyotos.org:80/docs/ukernel/spec.html
https://web.archive.org/web/20160904092954/http://www.coyotos.org:80/docs/ukernel/spec.html
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://doi.org/10.1109/TC.2019.2914037
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf
https://doi.org/10.48456/tr-955
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-955.pdf
https://doi.org/10.1109/ICCD.2018.00023
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201810-iccd2018-cheri-rtos.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201810-iccd2018-cheri-rtos.pdf

	I Software model and toolchain
	Introduction
	The CHERIoT RTOS Model
	Security goals
	Heap memory safety
	Local stack memory safety
	Cross-compartment stack memory safety
	Global memory safety
	Higher-level security properties
	Threat model


	Compartment model
	Compartments define spatial ownership
	Threads define temporal ownership
	Execution at the intersection of threads and compartments
	Compartment switches enforce compartment isolation
	Context switches enforce thread isolation
	Adding shared libraries

	RTOS implementation
	Per-thread state
	The loader
	Interrupt handling
	Synchronization and scheduling primitives
	The memory allocator
	Error handling
	Other components

	C/C++ language and toolchain extensions
	Specifying compartments
	Exposing library calls
	Controlling interrupt state
	Linking compartments

	ABI
	Compartment layout
	Access to globals
	Export table layout
	Import table layout
	Cross-compartment calls
	Cross-library calls
	Callbacks
	Relocations

	Known caveats
	Shared stacks
	Explicit leakage
	Availability


	II Architecture specification
	The CHERIoT ISA
	Starting subset of RV32
	Omitted CHERI features
	Changes to register file
	Instruction encodings
	Changes to instruction fetch / control flow
	Changes to memory accesses
	Tagged memory
	Temporal safety
	Controlling access to system registers
	Special capability registers
	Changes to exception handling
	The AUIPC and AUICGP instructions
	Capability encoding
	Capability permissions
	Sealed capabilities
	Capability bounds
	Set bounds operation
	Representability checks
	The NULL capability
	Zero length capabilities
	Zero permission capabilities
	Capability layout in memory
	Sail implementation

	Instruction compression
	Stack high water mark

	Instruction encoding summary
	Primary new instructions
	Capability-Inspection Instructions
	Capability-Modification Instructions
	Pointer-Arithmetic Instructions
	Pointer-Comparison Instructions
	Special Capabilty Register Access Instructions
	Adjusting to Compressed Capability Precision Instructions

	Modifications to existing RISC-V instructions
	Control-Flow Instructions
	Memory-Access Instructions
	Address Construction Instructions

	Encoding Summary

	Instruction reference
	Sail language used in instruction descriptions
	Constant Definitions
	Function Definitions
	CHERIoT Instructions
	AUICGP
	AUIPCC
	CAndPerm
	CClearTag
	CGetAddr
	CGetBase
	CGetHigh
	CGetLen
	CGetPerm
	CGetTag
	CGetTop
	CGetType
	CIncAddr
	CIncAddrImm
	CJAL
	CJALR
	CLC
	CMove
	CRepresentableAlignmentMask
	CRoundRepresentableLength
	CSC
	CSeal
	CSetAddr
	CSetBounds
	CSetBoundsExact
	CSetBoundsImm
	CSetEqualExact
	CSetHigh
	CSpecialRW
	CSub
	CTestSubset
	CUnseal



	III Appendices
	Version history
	Sail listings for capability encoding
	SMT validation of properties of the capability encoding

	Permission compression rationale
	Potential revised bound encoding
	Proposed compressed instruction encoding changes
	Compressed [backgroundcolor=white,language=]|CMove| and [backgroundcolor=white,language=]|CIncAddr|
	Three-operand compressed instructions

	Standing on the Shoulders of Giants
	CTSRD CHERI, CHERI-RISC-V, Morello, and CheriBSD
	Translation vs. Protection

	Incorporated CHERI Extensions
	Multi-Root, Compressed Permission Encodings
	Recursive Permissions
	Architectural Seals
	Capability Load Barrriers and Memory-Capability Versioning

	Esswood's CheriOS
	Xia's CheriRTOS
	Almatary's CompartOS and CheriFreeRTOS

	Bibliography


