
CHERIoT
Programmers’ Guide

David Chisnall

Safe and secure compartmentalisation

Contents
Preface 9
Acknowledgements . 9
Reading and using examples . 10
CHERIoT Concepts 13
Introducing memory safety . 13
Understanding CHERI capabilities . 15
Restricting memory access with compressed bounds 18
Decomposing permissions in CHERIoT 19
Building memory safety . 23
Sealing pointers for tamper proȏng . 24
Controlling interrupt status with sentries 26
Isolating components with threads and compartments 26
Sharing code with libraries . 27
Auditing ̑rmware images . 28
The RTOS Core 29
Starting the system with the loader . 29
Changing trust domain with the switcher 31
Time slicing with the scheduler . 33
Sharing memory from the allocator . 34
Building a C/C++ environment . 35
Supporting atomic operations . 36
Adding more standard-library functions 38
Exploring other RTOS features . 38
Getting started writing CHERIoT software 39
Getting the RTOS source code . 39
Using the CHERIoT development container 40
Setting up a development environment 41
Choosing an implementation . 44
Building ̑rmware images . 45

3

Running ̑rmware images . 51
C/C++ extensions for CHERIoT 55
Exposing compartment entry points . 55
Passing callbacks to other compartments. 56
Exposing library entry points . 59
Interrupt state control . 61
Importing MMIO access . 64
Sealing opaque types . 64
Manipulating capabilities with C builtins 65
Comparing capabilities with C builtins 69
Sizing allocations . 73
Manipulating capabilities with CHERI::Capability 75
Compartments and libraries 79
Compartments and libraries export functions 79
Understanding the structure of a compartment 83
Adding compartments to the build system 85
Choosing a trust model . 87
Implementing a safebox . 88
Building software capabilities with sealing 91
Sharing globals between compartments 96
Rȇning trust . 97
Validating arguments . 100
Ensuring adequate stack space . 103
Handling errors . 105
Writing rich error handlers . 106
Using scoped error handling . 108
Conventions for cross-compartment calls 110
Communicating between threads 113
Dȇning threads . 113
Identifying the current thread . 114
Limiting blocking with timeouts . 117

Contents

4

Sleeping . 118
Waiting for events with futexes . 121
Building locks from futexes . 124
Inheriting priorities . 127
Securing futexes . 130
Using event groups . 131
Sending messages . 133
Sending messages between compartments 138
Waiting for multiple events . 142
Memory management in CHERIoT RTOS 145
Understanding allocation capabilities 145
Creating custom allocation capabilities 145
Recalling the memory safety guarantees 146
Allocating with an explicit capability . 147
Using C/C++ default allocators . 149
Dȇning custom allocation capabilities for malloc and free 150
Allocating on behalf of a caller . 150
Ensuring that heap objects are not deallocated 152
Features for debug builds 155
Enabling per-component debugging . 155
Generating log messages . 157
Printing custom types . 159
Asserting invariants . 161
Using the debug APIs from C . 163
Writing a device driver 165
What is a device? . 165
Why do device drivers exist? . 166
Specifying a device's locations . 167
Accessing the memory-mapped I/O region 168
Handling interrupts . 170
Waiting for an interrupt . 171

5

Acknowledging interrupts . 172
Exposing device interfaces . 173
Using layered platform includes . 174
Conditionally compiling driver code . 174
Auditing ̑rmware images 177
Running cheriot-audit . 179
Using the default cheriot-auditmodules 180
Exploring a ̑rmware image . 180
Decoding software-dȇned capabilities 181
Writing a policy . 185
Networking 189
Understanding the structure of the network stack 189
Synchronising time with SNTP . 191
Creating a connected socket . 195
Creating a listening socket . 200
Securing connections with TLS . 202
Communicating with an MQTT server 210
Enforcing network access policies . 215
Understanding TCP/IP-stack reset . 221
Adding a new board 227
Specifying memory layout . 227
Exposing MMIO Devices . 228
Dȇning interrupts . 229
Controlling hardware features . 229
Specifying clock speeds . 230
Supporting conditional compilation . 230
Enabling simulation support . 231
Running with xmake run . 231
Creating board variants . 232
Porting from bare metal 233
Replacing a real-time control loop . 233

Contents

6

Yielding . 234
Replacing direct device access . 234
Replacing interrupt service routines . 234
Porting from FreeRTOS 237
Contrasting design philosophies . 237
Replacing tasks with threads and compartments 238
Using thread pools to replace coroutines 239
Porting code that uses message bưers 240
Porting code that uses event groups . 241
Adopting CHERIoT RTOS locks . 241
Building software timers . 242
Timing out blocking operations . 243
Dynamically allocating memory . 243
Disabling interrupts . 244
Strengthening compartment boundaries for FreeRTOS components . . 245

7

This is a public draft of the CHERIoT Programmers' Guide.
This is an early draft. It is public for early feedback and to help

people get started with the CHERIoT Platform. It is guaranteed
to contain errors, both factual and typographic.

This book is copyright David Chisnall under the CC BY-NC 4.0 license.
Portions of the text and code listings are part of the CHERIoT RTOS project

and are licensed under the MIT license:
MIT License
Copyright (c) Microsoft Corporation and CHERIoT RTOS contributors.
Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation ̑les (the "Software"),
to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE

Contents

8

Preface
The book that you are currently reading is not (yet) the second edition of the
CHERIoT Programmers Guide. It is a draft that contains most of the content
that will go into the ̑rst edition, but has not yet completed copyediting. As
such, expect it to contain both grammatical and typographic errors.

This book is intended as a companion to the CHERIoT Platform. The latest
draft is published on the CHERIoT web site.

The drafts are also available in PDF and ePub editions.

1. Acknowledgements
A fewmonths ago, this book was less than half its current length. Completing
this was supported by the UKRI Discribe Hub+, funded through the Economic
and Social Research Council [ES/V003666/1].

The version that you are now reading has had some signȋcant improve-
ments in accuracy and structure thanks to some great feedback from tech-
nical reviewers Phil Day, Richard Edgar, Adam Finney, Hugo McNally. It was
then copyedited byAmandaRobinson,whohas done an excellent job in̑xing
my typos, missing words, baroque sentence structures and all of the places
where I just forgot that sentences needed ̑nishing. Any remaining errors,
omissions, or poor explanations are my responsibility.

The cats on the cover represent safe, secure, compartmentalisation (what
is safer or more secure than a cat in a box?). Each cat is in a separate, isolated,
compartment, in the model for which CHERIoT was designed.

The cat photos were contributed by some wonderful people from the Fe-
diverse. Starting at the top left, numbered left to right then top to bottom,
the photo credits are:
1, 3, 5, 10:

Photographer: James (@chongliss@mastodon.ie), Cats: Jiji (1), Luna (3,
5), and Felix (10).

2, 11:
Photographer: Cassian Lodge (@cassolotl@eldritch.cafe), Cat: Rosa.

4:
Photographer: Marin Benčević (@marinbenc@sigmoid.social)

6:
Photographer: Asta Halkjær From (@ahfrom@fedi.ahfrom.synolo-
gy.me), Cat: Betty Rambo.

7:

9

https://cheriot.org/book
https://cheriot.org/book/cheriot-programmers-guide.pdf
https://cheriot.org/book/cheriot-programmers-guide.epub

Photographer: Victor Zverovich (@vitaut@mastodon.social), Cat: Luna
(no relation).

8:
Photographer: Michael McWilliams (@MichaelMcWilliams@mas.to),
Cat: Scotchy.

9:
Photographer: jarkman (@jarkman@chaos.social), Cat: Jack.

12:
Photographer: Isaac Freund (@ifreund@hachyderm.io), Cat: Marzi-
pan.

No generative AI was used in the creation of this image. No artist's work was
appropriated without their consent.

2. Reading and using examples
Code listings in this book specify the ̑le that they come from in the book's
examples. You can ̑nd the examples in a stand-alone examples git repository
on GitHub.

You can clone this repository with the following command:
$ git clone --branch first-edition
--recursive
https://github.com/CHERIoT-Platform/book-examples

Cloning into 'book-examples'...
This will clone exactly the version used in the ̑rst edition. If you check out

the first-edition-update branch, then youwill have a version thatmay not
exactly match the listings in the book, but which has been updated to work
with a newer version of the RTOS. Any di̛erences in this branchwill be listed
in the errata section of the online edition of the book.

The examples are provided as a stand-alone repository containing a snap-
shot of the RTOS and network stack each as a git submodule. It provides a devel-
opment container con̑guration (discussed in more detail in Section 3.2) that
provides all of the tools required to build the examples. This is discussed in
more detail in Chapter 3.

Example code in the book is pulled in from complete source ̑les to ensure
that everything that you see as a listing is valid code that will, at the very
least, compile (and hopefully work). You should be able to build and run all
of the example code yourself.

Listings have line numbers on the left. These are the line numbers in the
̑le, so you can read the extracted listings in context.

Preface

10

https://github.com/CHERIoT-Platform/book-examples
https://github.com/CHERIoT-Platform/book-examples

When you read the ̑les that contain these listings, you will see comments
like // something#begin and // something#end. These are the markers for
regions extracted and used in the book.

Syntax highlighting for this book is done by libclang (for C/C++) or TreeSit-
ter (for Lua and Rego).

2. Reading and using examples

11

Chapter 1.
CHERIoT Concepts
The CHERIoT platform is an embedded environment that provides a number
of low-level features via a mixture of hardware and software features.

1.1. Introducing memory safety
Memory in a modern computer is usually arranged as a ̓at set of storage lo-
cations. At the lowest level, youmay do a load or store operation on addresses
in this space. Every location in memory is identȋed by a number and loca-
tions are treated as adjacent if their addresses are one apart.When you start a
process or a virtual machine, this abstraction is preserved and virtual memory
lets you pretend that you have a (very large) ̓at address space.

When you use a programming language that's higher-level than assembly,
memory looks a little bit di̛erent. Rather than being a ̓at set of one-byte
storage locations, the language exposes memory as objects. An object may be
something simple, such as an integer, or something large, such as an array of
complex structures. On most hardware, this is purely a software abstraction.
Youmay specify that you have an on-stack array of twelve integers, or a heap
allocation containing a bưer for anetworkpacket, but the compiledprogram
will use numbers referring to locations in a ̓at memory space to represent
these locations.

The term memory safety applies to a variety of properties. It is somewhat
di̕cult to dȇne because the problems arise when you don't have memory
safety. When you do have memory safety, things simply work as you expect
them to. It's therefore easier to think about memory unsafety.

Memory safety is usually split into two subcategories: temporal memory
safety and spatial memory safety. When you don't have spatial memory safety,
you can think that you are accessing one object, but you may be accessing
an adjacent one. For example, if you allocate a 12-byte on-stack bưer and
then try to write 16 bytes into it, a memory-safe system will raise some kind
of error. An unsafe system will instead let you write four bytes over some
adjacent location, possibly a return address. This is the simplest example of
how a bưer over̓ow can lead to arbitrary-code execution. If an attacker can
overwrite the return address on the stack then they can cause the function
to return somewhere else. They can chain several of these together to build
rich exploits.

13

When you don't have temporal memory safety (sometimes called lifetime
safety) it is possible to access (read orwrite) an object after its lifetime ends. In
most language implementations, memory is reused and so accessing an object
after its lifetime really means accessing an unrelated object that happens to
be stored at the same place in memory.

Languages such as C and C++ are typically categorised as memory-unsafe
but this reallymeans that they allowunsafe implementations. In both languages,
violations of memory safety are specȋed as undȇned behavior. This means
that an implementation is allowed to do anything if they happen. The lan-
guage specȋcations allow this because, on most conventional hardware, dy-
namically checking that there are no memory-safety violations is too expen-
sive. It is completely valid for an implementation to decide to provide reliable,
deterministic, error reporting when these happen, and that's what CHERI C
and C++ do.

Higher-level languages usually impose some constraints that make it eas-
ier to e̕ciently guarantee memory safety. For example, Java references are
usually implemented as simple numerical addresses just like C pointers, but
the language doesn't allow you to do arithmetic on them. Thismeans that you
can't ever do some arithmetic to turn a Java reference into a reference to an-
other object. Similarly, it means that the Java Virtual Machine can accurately
locate all references to objects. This makes it possible to implement automatic
garbage collection in Java, ̑nding all of the objects that are not reachable and
deleting them rather than relying on the programmer to explicitly deallocate
them.

In most C and C++ implementations there are a lot of ways of violating
memory safety. For example, you can manufacture pointers from arbitrary
integers that happen to match addresses and access any object.

The lack ofmemory safety is responsible for around 70%of critical security
vulnerabilities. Memory-safety errors are usually the worst kinds of bug be-
cause it is impossible to reason about their impacts from the program source
code. By dȇnition, you are accessing somememory that you don't think that
you're accessing. This memory may be an object that's completely unrelated
to the running code or even something that's part of the implementation of
the language and not normally directly accessible from within the language.

Attackers usually ̑nd it easy to use memory-safety vulnerabilities for ar-
bitrary-code execution attacks. At this point, the program that is running is
no longer the program that you thought you had started, but something dif-
ferent and under the attacker's control.

1. CHERIoT Concepts

14

1.2. Understanding CHERI capabilities
CHERI (pronounced 'cherry') dȇnes an abstract set of features that can be
applied to a base architecture, such as AArch64, x86, or RISC-V, to provide
̑ne-grainedmemory safety that can be used as a building block for compart-
mentalisation. CHERIoT is a concrete instantiation of the CHERI ideas that is
tailed and extended for use in low-cost embedded devices. It makes sense to
understand CHERI before you try to understand CHERIoT.

CHERI stands for Capability Hardware Enhanced RISC Instructions. This is a
somewhat contrived acronym but it captures a few key ideas in CHERI. It's a
extension to existing hardware and it doesn't require any complexmicrocode
or look-aside structures to implement (it can be applied to RISC instruction
sets). Most importantly, it's an extension that adds a capability model to the
base instruction set.

A capability, in the abstract sense, is an unforgeable token of authority
that must be presented to perform an operation. Capabilities exist in the
physical world in various forms. For example, a key to a padlock is a capability
to unlock that padlock. When the key is presented, the padlock can be un-
locked. Without the key the padlock cannot be unlocked without exploiting
some security vulnerability, such as using lock picks or a bolt cutter. It does-
n't matter to the padlock who presents the key, only that the correct key has
been presented. Some complex building locks have di̛erent keys that autho-
rise unlocking di̛erent sets of doors. For example, a team leader may have a
key that unlocks the o̕ces of everyone on their team and the building man-
ager may hold a key that unlocks everything.

Capabilities can be delegated. The building manager may loan their key
to someone else to unlock a door. The key and the door don't care who is
holding them. You can create a copy of a capability that you hold and give it
to someone else, just as you could go to a key cutter and have a copy made of
a key that you own.

A lot of capability systems (including CHERI) allow you to reduce the rights
that a capability grants. This breaks the key metaphor somewhat. If you have
a master key for a building, you can't easily use it to create a key that allows
just locking but not unlocking doors, or create one that opens all of the doors
on the ground ̓oor but no others, but capability systems usually do permit
this kind of operation.

Some kinds of capabilities can also be revoked. This is traditionally the
hardest operation to perform on capabilities. In our key analogy, this is equiv-
alent to someone performing an audit of all of the keys and removing some

1.2. Understanding CHERI capabilities

15

of them from people that shouldn't have them anymore. This is often solved
in capability systems by adding a layer of indirection. Rather than allowing
capabilities to be stored anywhere, the system places them in one or more
centralised tables. When you use a capability, you do so by referring to a lo-
cation in a table. This makes it easy to revoke capabilities by removing them
from the tables. UNIX ̑le descriptors work like this: you refer to them by
number and the kernel can invalidate them by simply removing the entry at
that location in your process's ̑le-descriptor table.

Some hardware capability systems have used a similar approach to capa-
bility storage and revocation but it has a signȋcant disadvantage: every time
that you use a capability, the hardware must ̑nd it in the relevant table.
This can turn a singlememory access into several. Implementations canmiti-
gate this somewhat by caching, but these caches quickly introduce signȋcant
power overheads. CHERI avoids this entirely, which makes the common op-
erations easier, but makes revocation somewhat more challenging. CHERIoT
includes some additional hardware extensions for revocation,whichwe'll dis-
cuss in Chapter 7.

On a CHERI system, capabilities are used to authorise access to memory.
Any instruction that takes an address in a conventional architecture takes a
CHERI capability as the operand instead. The CHERI capability both describes a
location in memory and grants access to it. For example, the following RISC-
V snippet loads four bytes from ơset eight relative to the address in register
a1 and places the result in s0.
lw s0, 8(a1)
On a CHERIoT system, which is a CHERI RISC-V variant, this instruction

looks slightly di̛erent:
clw s0, 8(ca1)
Now, it is loading a word into s0 from ơset eight relative to the capability

(not address) in register ca1 (a1 extended to hold a capability.) This instruc-
tion will check that the capability in ca1 is a valid capability, check that it
has load permission, and check that the range covered by the four-byte load
starting at ơset eight from the current address is all in bounds. If, and only
if, all of these checks pass, will it do the same load as the original version. If
any of these fail, the instruction will trap. The next section explains what it
means for a capability to be valid and what permissions a capability can hold.

Most of the time, hopefully, you will not be writing assembly and so this
is simply a detail for the compiler to worry about. You can think of a CHERI
memory capability as a pointer that the hardware understands. In C, if you

1. CHERIoT Concepts

16

hold a pointer to an object then you are allowed to access the object that it
points to. If you do some pointer arithmetic that goes out of bounds of the
object, C says that this is undȇned behaviour. CHERI says more concretely
that it will trap: you are not authorised to access that memory with this capa-
bility. If you hold two pointers to objects that are adjacent in memory, then
you may be authorised to access the memory, but not with the pointer that
you are using.

This highlights the two key security principles that capability systems are
able to enforce:

• The principle of least privilege, which states that a piece of running code
should have the rights to do what it needs to do and no more.

• The principle of intentional use, which states that any privileged opera-
tion must be performed by intentionally exercising the specȋc right
that is needed.

Capability systems make it easy to implement least privilege by providing
running code only with theminimal set of capabilities (with the limited set of
rights) that they need. They make it easy to implement intentionality by re-
quiring the specȋc capability to be presented alongwith each operation. The
latter avoids a large category of confused deputy attacks, where a component
holding one privilege is tricked into exercising it on behalf of a di̛erently
trusted component.

In a CHERIoT system, every pointer in a higher-level language
such as C, and every implicit pointer (such as the stack pointer,
global pointer, and so on) used to build the language's abstrac-
tions, is a CHERI capability. If you have used other CHERI systems
then you may have seen a hybrid mode, where only some point-
ers are capabilities and others are integers relative to an implicit
capability. CHERIoT does not have this hybrid mode. The hybrid
mode is intended for running legacy binaries butmakes it harder
to provide ̑ne-grained sandboxing. CHERIoT assumes all code
will be recompiled for the new target.

The phrase 'di̛erently trusted' in the previous paragraph is not an at-
tempt to extend political correctness to software components. Capability sys-
tems do not imply hierarchical trust models. Two components may hold dis-
joint or overlapping sets of capabilities that allow each to perform some set

1.2. Understanding CHERI capabilities

17

of actions that the other cannot. In a CHERI system, this can include one com-
ponent having read access to an object and another write access, or two com-
ponents having access to di̛erent ̑elds of the same structure.

1.3. Restricting memory access with compressed bounds
The original CHERI prototypes used a 256-bit capability that stored a full 64-
bit base and length. This was useful for research and prototyping but replac-
ing 64-bit pointers with 256-bit ones was an unacceptable overhead when
CHERI started tomove from research to production. Newer CHERI implemen-
tations reduce this overhead by taking advantage of redundancy. The base,
top, and address of a capability all have some common bits in the top of their
address.

Consider a pointer to memory location 0x08000234, in an allocation that
starts at 0x08000230 and is 64 bytes long. The base, top, and address all start
0x080002, so you can store that part separately and then you just need to
store the low bits for each of the three values. Modern CHERI encodings work
somewhat like this. They store the address of the pointer as a full 32- or 64-bit
value and then use a ̓oating-point bounds encoding to store the distance from
that value to the top and the bottom.

The ̓oating-point representations use a shared exponent but di̛erent
mantissas for the top and bottom. In the previous example, this means that
you'd store the address as the full 32-bit value: 0x08000234. The top is 0x3c
bytes above and the base 0x4 bytes below this address. Even on the most
space-constrainedCHERI encodings, thesewill ̑t entirely in themantissa and
so the exponent will be zero.

CHERIoT uses a nine-bit mantissa. If the distance to the top and base can't
be expressed in nine bits then you may not be able to store a precise value.
For example, imagine that you want a 1024-byte allocation. You can express
this, but only if the base and top are at least four-byte aligned.

The larger a memory region you want to represent, the more strongly
aligned the base and topmust be. The compiler ormemory allocatorwill han-
dle this for you if capabilities correspond to complete allocations but this can
be a problem when you are creating sub-object capabilities. For example, if you
want to pass a capability to a region within a reusable bưer as a function
argument, you may not be able to express the bounds precisely. When this
happens, youmust choose between splitting the operation into two calls that
each use part of the bưer, or trusting the callee with slightly larger bounds.

1. CHERIoT Concepts

18

1.4. Decomposing permissions in CHERIoT
Any CHERI system provides a set of permissions on capabilities. Permissions,
along with bounds, are capability metadata, as shown in Figure 1. CHERI sys-
tems typically use double the size of the platform's native address for capa-
bilities, so all of the metadata needs to ̑t in the size of one address. As well as
this metadata, there is a non-addressable tag bit, sometimes called a valid bit
that di̛erentiates between capabilities and other data. If a memory location
or a register has its valid bit set, then it holds a capability and the hardware
promises that this was derived from a valid sequence of operations from some
more powerful capability.

A lot of capability systems, particularly software capability systems, store
capabilities in tables or special memory locations. CHERI could not take this
approach because it was designed to allow C implementations to use capabil-
ities to represent pointers and C allows interleaving pointers and data. Any
memory location in a C program that is large enough and su̕ciently aligned
to hold a pointer may hold a pointer or some other data. CHERI systems sup-
port this arbitrary interleavingwith a tag bit. On a CHERIoT system, addresses
are 32 bits but capabilities are 65 bits. Normal data operations see only 64 of
these bits but capability operations see all 65. If you store data (for example,
a 32-bit word or an 8-bit byte) somewhere in a 65-bit chunk, the data will be
stored and the tag bit will be cleared. If you load a capability-sized chunk of
memory into a capability register, the tag bit will be loaded along with the
other 64 bits and will determine whether you've loaded a capability or just 64
bits of data. When you store this back to memory, the tag bit is propagated
out again.

Tag bits and their accompanying data are moved between registers and
memory atomically. This guarantees that you can't write part of a capability
and some data to the same location and end up with a valid capability.

The very earliest CHERI research prototypes used a 256-bit
capability on a 64-bit architecture. The versions aimed at pro-
duction have all used no more than double the address size to
store a capability.

Most prior CHERI systems have 64-bit addresses (and therefore 128-bit ca-
pabilities) and so have a lot of space for permissions as an orthogonal bit̑eld.
The CHERIoT platform has 32-bit addresses (and therefore 64-bit capabilities)

1.4. Decomposing permissions in CHERIoT

19

Tag Permissions Bounds

Address

Type

Is this a pointer?

What can I do with this pointer?

Is this an opaque (sealed) pointer
(and what kind)?

What range of memory can I use
this pointer to access?

What address does this pointer
point to?

Memory

Fཥ༥ၸျໞ 1. A CHERIoT capability grants access to a range of memory.
and so has to compress the permissions. This is done, in part, by separat-
ing the permissions into primary and dependent permissions. The primary
permissions (listed in Table 1) have meaning by themselves. If you use the
CHERIoT RTOS logging support (described in Chapter 8) to print capabilities,
the permissions will be listed using the letters in the ̑rst column.

Read and write permission allow the capability to be used as an operand
to load and store instructions, respectively. Execute allows the capability to
be used as a jump target, where it will end up installed as the program counter
capability and used for instruction fetch.We'll cover the sealing and unsealing
permissions later.

Global is a bit unusual. The other permissions a̛ect what you can do with
thememory that the capability refers to, whereas global a̛ects what you can
do with this capability. This should make more sense when we look at the
permissions that interact with the global permission.

1. CHERIoT Concepts

20

Debug
output letter

Permission
name Meaning

G Global May be stored anywhere in memory.

R Load (Read) May be used to read.

W Store (Write) May be used to write.

X Execute May be used to as a jump target (executed).

S Seal May be used to seal other capabilities (see
Section 1.6).

U Unseal May be used to unseal sealed capabilities.

0 User 0 Reserved for software use.

Tຠྲໞ 1. CHERIoT primary permissions
The dependent permissions (listed in Table 2) provide more ̑ne-grained

control. Dependent permissions are ones that depend on the existence of
someother permission.Without that permission (or, in the case of load / store
capability, at least one of the possible primary permissions), they would be
meaningless.

For many of these, it's more useful to think about what can't be done if
you lack the permission than to think about what can be done if you have it.
By default, the load and store permissions authorise instructions to load and
store non-capability data. With the load / store capability permission, they
also allow loading and / or storing capabilities. Removing this permission is
useful for pure-data bưers. You can't accidentally store a valid pointer into
them, and if they already contain a valid pointer then no one can load it via
this capability.

You can use a capability that has the load-global permission to load capa-
bilities that have the global permission. Any capability loaded via a capabil-
ity without this permission will have its global (and load-global) permission
stripped. It can then be stored only via a capability that has the store-local
permission.

1.4. Decomposing permissions in CHERIoT

21

Debug
output
letter

Permission
name

Depends
on Meaning

c Load / Store Ca-
pability R / W

May be used to load or store ca-
pabilities as well as non-capability
data.

g Load Global R May be used to load capabilities
with the global permission.

m Load Mutable R May be used to load capabilities
with write permission.

l Store Local W
May be used to store capabilities
that do not have global permis-
sion.

a Access System
Registers X Code run via this capability may

access reserved special registers.

Tຠྲໞ 2. CHERIoT dependent permissions
These permissions are complex but they exist to support language-level

features that are much simpler. These language-level properties work be-
cause CHERIoT RTOS provides the store-local permission exclusively to stacks
and stack capabilities are not global. This combination initially guarantees
thread isolation in CHERIoT. Pointers to stack allocations are derived from the
stack capability, and so lack global, and can therefore be stored only on the
stack (the only thing with store-local permission).

Removing the global permission from any other capability gives it the
same property: you can store it only on the stack. If you pass it to another
function then that function cannot store it in a global or on the heap, which
gives you a shallow no-capture guarantee: The callee cannot hold onto a copy
of the pointer after the end of the call. This is shallow because the callee can
capture pointers to objects that are reachable via pointers stored in the orig-
inal object. Removing the load-global permissionmakes this a deep no-capture
guarantee. Any pointer loaded, at any level of indirection, from the original
pointer will have the property that it can be stored only on the stack.

1. CHERIoT Concepts

22

Similarly, store and load-mutable permissions are intended to give simi-
lar language-level guarantees for mutability. If you have a capability without
store permission then you cannot use it to modify the object that the capa-
bility points to. If that object contains pointers then you may be able to load
one of those andmodify an object reachable from the original capability. This
gives a shallow immutability. Removing the load-mutable permission turns this
into a deep immutability guarantee, stripping both store and load-mutable per-
missions from any capability that you load. This lets you share a read-only
view of a complex data structure.

The access-system-registers permission controls access to a small num-
ber of privileged registers and is never handed out to code other than a tiny
trusted component in the core of the RTOS.

⚠

The CHERIoT encoding stores 12 permissions in ̑ve bits by
excludingmeaningless combinations and some that are not nor-
mally useful. This comes with a few limitations, most notably
that execute permission implies load. It is not possible to re-
move load permission from an executable capability. Somemod-
ern platforms support execute-only memory as a security feature.
CHERIoT cannot express this but this does not cause practical
problems for security. The sentry mechanism (described in Sec-
tion 1.6) lets you have memory that is readable only while exe-
cuting from it, which is amore useful security property. Execute-
only memory normally aims to prevent information leaks that
lead to code-reuse attacks. These attacks, in turn, are triggered
via pointer injection or other memory-safety violations, which
CHERIoT deterministically mitigates.

1.5. Building memory safety
Memory safety is a property of a source-level abstract machine. Memory
safety for C, Java, or Rust mean di̛erent things. At the hardware level,
CHERIoT is designed to enable implementations of languages to enforce
memory safety, in the presence of untrusted code such as inline assembly
or code written in a di̛erent language. Most importantly, it provides the
tools that allow code in a compartment (see Section 1.8) to protect itself from
arbitrary code in a di̛erent compartment. This means protecting objects
such that code from a di̛erent security context cannot:

1.5. Building memory safety

23

• Access objects unless passed pointers to them.
• Access outside the bounds of an object given a valid pointer to that
object.

• Access an object (or thememory that was formerly used for the object)
after the object has been freed.

• Hold a pointer to an object with automatic storage duration (an 'on-
stack' object) after the end of the call in which it was created.

• Hold a temporarily delegated pointer beyond a single call.
• Modify an object passed via immutable reference.
• Modify any object reachable from an object that is passed as a deeply
immutable reference.

• Tamper with an object passed via opaque reference.
The hardware provides tools for enforcing all of these properties but it's up to
the compiler and the RTOS to cooperate to use them correctly. For example,
in the CHERIoT ABI, each compartment has a single capability in a register
that spans all of its globals and a single capability that grants access to its en-
tire stack. The compiler will derive capabilities from these that are bounded
to individual globals or on-stack objects. Inline assembly that references the
global-pointer or stack-pointer registers directly can bypass spatial memory
safety for these objects, but only from within the same compartment. None
of the properties relating to heap objectsmake sense in the absence of a heap.
CHERIoT RTOS provides a shared heap (see Chapter 7) which enforces spatial
and temporal safety for heap objects.

1.6. Sealing pointers for tamper proȏng
Wehave discussed all of the primary permissions fromTable 1with the excep-
tion of those related to sealing. Sealing a capability transforms it from some-
thing that conveys rights and can be used to exercise those rights into an
opaque token. It can be transformed backwith the converse unseal operation.

Capabilities have one ̑eld that we have not yet discussed: an object type.
This is normally zero, representing an unsealed capability. Any non-zero
value indicates a sealed capability.

When you seal a capability, you use a capability with permit-seal permis-
sion. The sealing operation sets the object type of the newly sealed capability
to the address of the capability that authorised the seal operation. With a
non-zero object type, the sealed capability cannot be modȋed. Any attempt
to change the address, bounds, or permission will clear the tag and give an
invalid capability. It can be copied but is always treated as an opaque value.

1. CHERIoT Concepts

24

Unsealing is the only operation that can modify a sealed capability. This re-
quires a valid capability with permit-unseal permission and the same address
as the capability that was used in the original seal operation. The unseal op-
eration results in a capability that is identical to the one that was sealed.

If you attempt to unseal a capability that is not sealed with the value of
the permit-unseal capability then youwill get back an untagged value. Sealed
capabilities can therefore be used as trusted handles that can be shared with
untrusted code. If the untrusted code tries to modify the value in any way,
you can detect the tampering, either by inspecting the tag bit after unsealing
or by trying to use it and getting a trap.

Sealing is the building block for a lot of the higher-level security proper-
ties in the CHERIoT system. Being able to hand out opaque tokens that can be
validated when handed back is a very powerful primitive. Sealed capabilities
are a core part of the cross-compartment call mechanism as well as the build-
ing block for software-dȇned capabilities throughout the RTOS.

The CHERIoT encoding has space for only three bits of object type (in con-
trast with 'big CHERI' systems such as Morello that typically have 18 bits).
This is su̕cient for a small number of core parts of the ABI but not enough
for general-purpose use. To mitigate this limitation, the CHERIoT memory
allocator provides a set of APIs (see Section 7.7) that virtualise the sealing
mechanism. The same mechanism is also used to build software-dȇned ca-
pabilities.

The object type in a CHERIoT capability is interpreted di̛erently depend-
ing on whether the sealed capability is executable or not. For executable ca-
pabilities, most of the object types are reserved for sealed entry (sentry) ca-
pabilities. A sentry capability can be unsealed automatically by jumping to it.
Return addresses are automatically sealed by the jump-and-link instructions,
so you cannot modify a return address, you can only jump to it.

Beyond that, return addresses are sealed as a di̛erent kind of sentry. If you
substitute a return address on the stackwith a function pointer (or vice versa)
youwill get a trap in the jump. Thismakes control-̓ow hijacking attacks very
hard to mount on a CHERIoT system.

Sentries are also used as a building block for cross-compartment calls. A
sentry can point to a region ofmemory that contains both code and data. The
data is accessible via PC-relative addressing only after jumping into the code.

1.6. Sealing pointers for tamper proȏng

25

1.7. Controlling interrupt status with sentries
In conventional RISC-V (andmost other architectures) the interrupt status is
controlled via a special register. This register can be modȋed only in a privi-
legedmode. The CHERIoT ISA allows this register to bemodȋed only by code
runningwith the Access SystemRegisters permission in the program counter
capability.

Embedded software oftenwants to disable interrupts for short periods but
granting the permission to toggle interruptsmakes auditing availability guar-
antees betweenmutually distrusting components almost impossible. Instead,
CHERIoT provides three kinds of sentries that control the interrupt status.
These either enable or disable interrupts, or leave the interrupt enabled state
untouched. The branch-and-link instruction captures the current exception
state in the return sentry.

This allows you to provide function pointers to functions thatwill runwith
interrupts disabled and guarantee that, on return, the interrupt status is reset
as it should be. In e̛ect, this brings structured programming to interrupt
status.

In the RTOS, for example, the atomics library provides a set of functions
that (on single-core systemswithout hardware atomics) perform simple read-
modify-write operations with interrupts disabled. A compartment can use
thesewithout having the ability to arbitrarily toggle interrupts, giving a limit
on the amount of time that it can run with interrupts disabled.

1.8. Isolating components with threads and compartments
Most mainstream operating systems have a process model that evolved from
mainframe systems. This is built around isolation, with sharing as an af-
terthought. The primary goal for process isolationwas to allow consolidation,
replacing multiple minicomputers with a single mainframe. These abstrac-
tions were designed with the assumption that they ran independent work-
loads that wanted to share computational resources. Gradually, communica-
tion mechanisms have been added on top.

CHERIoT starts from a fundamental assumption that isolation is easy, (safe)
sharing is hard. Particularly in the embedded space, it's easy to provide a sepa-
rate core and SRAM if you want strong isolation without sharing. Most useful
workloads involve communication between distrusting entities. For example,
if you want to connect an IoT device to a back-end service, your ethernet

1. CHERIoT Concepts

26

driver needs to communicate with the TCP/IP stack, which needs to commu-
nicate with the TLS stack, which needs to communicate with a higher-level
protocol stack such as MQTT, which needs to communicate with your device-
specȋc logic.

CHERIoT provides two composable abstractions for isolation:
• Compartments are units of spatial isolation
• Threads are units of temporal isolation

A compartment owns some code and some globals. It exports a set of func-
tions as entry points andmay import some entry points from other compart-
ments. A thread owns a register state and a stack and is a schedulable entity.

At any given point, the core is executing one thread in one compartment.
Threads move between compartments via function call and return. When
code in one compartment calls another, it loses access to everything that was
not explicitly shared. Specȋcally:

• All registers except argument registers are zeroed.
• The stack capability is truncated to exclude the portion used by the
caller.

• The portion of the stack that is delegated from the caller to the callee
is zeroed.

On return, the stack becomes accessible again but a similar set of state clear-
ing guarantees con̑dentiality from the callee to the caller.

Arguments that are passed fromone compartment to anothermay include
capabilities. At the start of execution, each compartment has a guarantee
that nothing else can see or modify its globals. If one compartment passes a
pointer to one of its globals to another, you now have shared memory. This
can be useful with restricted permissions for sharing read-only epoch coun-
ters and similar.

1.9. Sharing code with libraries
Invoking reusable components does not always involve a change of security
context. The CHERIoT software model provides shared libraries for sharing
code without a security boundary.

Unlike compartments, shared libraries do not have mutable globals. They
are reusable code and read-only data, nothing else. Because of this they are
invoked via amuch lighter-weightmechanism than a full cross-compartment
call. This mechanism doesn't clear the stack or registers.

Using a CHERIoT shared library is conceptually equivalent to copying the
code that implements it into every compartment that uses it. Unlike simple

1.9. Sharing code with libraries

27

copying, shared libraries are independently auditable (see Chapter 10) and
require only a single copy of the code in memory. All entry points exported
from a shared library are invoked via sentries. This means that they can en-
able or disable interrupts for the duration of the call.

Some shared libraries expose very simple functions, others are a lot more
complex. For example, the atomics library provides some functions that are
only a handful of instructions long. In contrast, the shared library that pack-
ages Microvium provides a complete JavaScript interpreter.

1.10. Auditing ̑rmware images
When a CHERIoT ̑rmware image starts, the loader initialises all of the ca-
pabilities that each compartment holds at boot. It does this using metadata
provided by the linker. This means that everything that leads to capabilities
being provided is visible to the linker. The CHERIoT linker, in addition to pro-
viding the ̑rmware image, provides a report about this structure. The report
includes:

• The hashes of the sections that form each compartment.
• The list of exports from each compartment and each library.
• The list of functions imported for each compartment and each library.
• Whether each entry point runs with interrupts enabled, disabled, or
inherited.

• The list ofmemory-mapped I/O (MMIO) regions accessible by any com-
partment.

• How much memory each compartment is permitted to allocate.
• The initial entry point, stack size, and priority for each thread.

This allows automated build time auditing of various high-level security poli-
cies. For example, you can check that a single compartment, containing a
known binary (for example, one that has been approved by regulators), is the
only thing that is able to access a specȋed device. You can require that noth-
ing runs with interrupts disabled except a specȋc set of permitted library
functions. Or you can say that users can provide their own logic for control-
ling their IoT device, but require that only compartments that you trust can
have the permission to connect to your cloud servers.

1. CHERIoT Concepts

28

https://microvium.com

Chapter 2.
The RTOS Core
The core of the RTOS is a set of privilege-separated components. Each core
component runs with some privileges that mean that it is (at least partially)
in the trusted computing base (TCB) for other things.

2.1. Starting the system with the loader
The loader runs on system startup. A ̑rmware image contains everything
that needs to end up in memory when the system starts, as well as an im-
age header that contains metadata describing its layout. The loader reads the
header and populates each compartment with the set of capabilities that it
needs. The loader exists so that the system can be started from a ̑rmware
image that does not embed capabilities. This is a useful property even if a
particular target has persistent storage (non-volatile RAM) that can hold ca-
pabilities because it ensures that there is an on-device pointer provenance ̓ow
for the ̑rmware.

Pointer provenance ensures that pointers in the systemwere derived from
other pointers via a chain thatmakes sense. Pointers cannot bemade up from
thin air. When a CHERI system boots, it starts with one or more capabilities
in registers that convey the full set of permissions. If you call a function like
malloc there is a chain of derivations that leads back to these initial capabil-
ities. For example, the loader will create a capability to the heap region that
has a subset of permissions (for example, not execute permission) that covers
the region that will be used for the heap, and then the memory allocator will
reduce the bounds to hand out a capability for a single object. CHERI doesn't
let you reconstruct that chain but it does guarantee that it, or some equiva-
lent chain, must have existed.

If a device has non-volatile storage that holds tags, you will typically run
the loader once at install time or on ̑rst boot of a new ̑rmware image. This
ensures that the initial state for each component's memory contains only ca-
pabilities that the loader explicitly grants to it. This, in turn, enables multi-
stage boot where some functionality, such as attestation, secure key storage,
and so on, are provided by a bootloader. These abstractions can all be built
from capabilities and so, unlike systems based on protection rings such as
TrustZone, an arbitrary number can be nested.

29

If a compartment contains a global that is a pointer, initialised to point to
another global, the loader will initialise the pointer by deriving a capability
from one out of either the compartment's code or data capabilities. Again,
this enforces provenance properties, this time within a ̑rmware image. A
malicious compartment may provide a relocation that points to a global out-
side its ownmemory, but the loader will attempt to derive the capability only
from the compartment's initial pcc (code) and cgp (globals) regions and so
will fail. Globals may point to other globals owned by the compartment; the
loader will fail to derive a valid capability if they point elsewhere.

The loader must also provide all capabilities to compartments that allow
them to communicate outside of their own private space. This includes access
tomemory-mapped I/O (MMIO) regions, capabilities for pre-shared objects, for
software-dȇned capabilities, and any capabilities for calling entry points ex-
posed by other compartments or libraries. The loader also creates the stacks
and trusted stacks for each thread and creates their initial entry points.

The loader is the most privileged component in the system. When a
CHERIoT CPU boots, it will have a small set of root capabilities in registers.
These, between them, convey the full set of rights that can be granted by a
capability. Every capability in the running system is derived (often via many
steps) from one of these. As such, the loader is able to do anything.

In a system with a multi-stage boot, the initial capabilities
provided to the loader may be restricted, rather than the om-
nipotent set from CPU boot. For example, an early loader may
implement A/B booting by providing the RTOS loader with ca-
pabilities to only half of persistent memory.

The risk from the loader is mitigated by the fact that it does not run on
untrusted data. The loader operates only on the instructions generated by
the linker and so it is possible to audit precisely what it will do (see Chapter
10). It is also possible to validate this by running the loader in a simulator and
capturing the precise memory state after it has run.

The loader enforces some of the guarantees in the initial state. It is struc-
tured to be able to enforce some of these by construction. For example, only
stacks and trusted stacks (accessible only by the switcher, see Section 2.2)
have store-local permission and these do not have global permission. The
scheduler derives these from a capability that has store-local but not global
permissions and derives all other capabilities from one that has the store-lo-
cal permission removed.

2. The RTOS Core

30

Before starting the system, the loader erases almost all of its code (leaving
the stub that handles this erasure), its stack, and clears its registers. The last
bit of the loader's code becomes the idle thread (a wait-for-interrupt loop).
The loader's stack is used for the scheduler stack. The memory that held the
loader's code is used for heap memory.

2.2. Changing trust domain with the switcher
The switcher is the most privileged component that runs after the system
̑nishes booting. It is responsible for transitions between threads (context
switches) and between compartments (cross-compartment calls and re-
turns). The switcher is a very small amount of code—under 500 instructions
—that is expected to be amenable to formal verȋcation.

Work is underway to formally verify the security properties
of the switcher, but is still in early stages at the time of writing.

The switcher is the only component in a running CHERIoT system that has
access-system-registers permission. It uses this primarily to access a single
reserved register that holds the capability that dȇnes the trusted stack for the
current thread. A trusted stack is a region of memory containing the register
save area for context switches and a small frame for every cross-compartment
call that allows a safe return even if the callee has corrupted all state that it
has access to.

Trusted stacks are set up by the loader. The loader passes the scheduler
(see Section 2.3) a sealed capability to each of these on initialisation. The
switcher holds the only permit-unseal capability for the type used to seal
trusted stacks.

The context switch path in the switcher spills all registers to the current
trusted stack's save area and then invokes the scheduler, which returns a
sealed capability to the next thread to run. It then restores the register ̑le
from this thread and resumes. If the scheduler returns an invalid capability
(one not sealed with the correct type) then the switcher will raise a fault.
When an interrupt is delivered, a copy of the program counter capability for
the interrupted state is saved in the exception program counter capability regis-
ter. If the exception program counter capability on exception entry is within
the switcher's capability, the switcher will terminate. The switcher is written
to avoid trapping and so any trap is assumed to be an active attack trying to
exploit a bug in the switcher.

2.2. Changing trust domain with the switcher

31

On the cross-compartment call path, the switcher is responsible for un-
sealing the capability that refers to the export table of the callee, clearing
unused argument registers, pushing the information about the return to the
trusted stack, subsetting the bounds of the stack, and zeroing the part of the
stack passed to the callee. On return, it zeroes the stack again, zeroes unused
return registers, and restores the callee's state.

This means that the switcher is the only component that has access to
either two threads', or two compartments', state at the same time. As such, it
is in the TCB for both compartment and thread isolation. This risk ismitigated
in several ways:

• The switcher is small. It contains a similar number of instructions com-
pared to the amount of unverȋed code in seL4.

• The switcher is defensive. Most errors simply forcibly unwind to the
previous trusted stack frame, so a compartment that attempts to at-
tack the switcher exits to its caller.

• Like everything else in the system, it must follow the capability rules.
Unlike an operating system running in a privileged mode on main-
stream hardware, it does not get to opt out of memory protection, it
is not able to access beyond the bounds of capabilities passed to it or
access any memory to which it does not have an explicit capability.

• It is largely stateless. All state that it modȋes is held in the trusted
stack for the current thread.

The switcher appears to the rest of the system as a library. It can expose func-
tions for inspecting or, in a small number of cases, modifying state. These are
dȇned in switcher.h. For example, prior to performing a cross-compart-
ment call, you may want to check that there is su̕cient space on the trusted
stack for the number of calls that it will need to make. The trusted_stack-
_has_space function exposed by the switcher lets you query if the trusted
stack has enough space for a specȋed number of cross-compartment calls.
The amount of (normal) stack space is directly visible in a compartment and
so normal stack checks do not require the switcher to be involved.

The switcher also implements the thread_id_get function, which pro-
vides a fast way for compartments to determine which thread they are cur-
rently running on. This function is used in the implementation of priority-
inheriting locks (see Section 6.7). Implementing e̕cient priority-inheriting
locks requires a fast mechanism for getting the current thread ID so that it
can be stored in the lock.

2. The RTOS Core

32

Documentation for the trusted_stack_has_space function
_Bool trusted_stack_has_space(int requiredFrames)

Returns true if the trusted stack contains at least requiredFrames
frames past the current one, false otherwise.
Note: This is faster than calling either trusted_stack_index or
trusted_stack_size and so should be preferred in guards.

Documentation for the thread_id_get function
uint16_t thread_id_get()

Return the thread ID of the current running thread. This is mostly
useful where one compartment can run under di̛erent threads and
it matters which thread entered this compartment.
User threads (that is, those dȇned in the xmake ̑rmware con̑gura-
tion) are 1-indexed, with 0 indicating primordial idle and scheduling
contexts. User code never runs in these contexts and so anything us-
ing this result to index into a per-thread array may wish to subtract
one and avoid allocating an array element for the idle thread.
This is implemented in the switcher.

2.3. Time slicing with the scheduler
When the switcher receives an interrupt (including an explicit yield), it dele-
gates the decision about what to run next to the scheduler. The scheduler has
direct access to the interrupt controller but, in most respects, is just another
compartment.

The switcher also holds a capability to a small stack for use by the sched-
uler. This is not quite a full thread. It cannot make cross-compartment calls
and is not independently schedulable. When the switcher handles an inter-
rupt, it invokes the scheduler's entry point on this stack.

2.3. Time slicing with the scheduler

33

The scheduler also exposes other entry points that can be invoked by
cross-compartment calls. These ful̑l a role similar to system calls on other
operating systems, for example waiting for external events or performing in-
ter-thread communication. The scheduler implements blocking operations
by moving the current thread from a run queue to a sleep queue and then
issuing a software interrupt instruction to branch to the switcher. When the
switcher then invokes the scheduler tomake a scheduling decision, the sched-
uler will discover that the current thread is no longer runnable and pick an-
other. Once the thread becomes runnable again, the switcher resumes the
thread from the point where it yielded, at which point it can return from the
scheduler.

The scheduler is, by dȇnition, in the TCB for availability. It is the compo-
nent that decides which threads run andwhich do not. A bug in the scheduler
(with or without an active attacker) can result in a thread failing to run.

It is not, however, in the TCB for con̑dentiality or integrity. The sched-
uler has no mechanism to inspect the state of an interrupted thread. When
invoked explicitly, it is called with a normal cross-compartment call and so
has no access to anything other than the arguments.

As with the switcher, the scheduler mitigates these risks by being small
(though larger than the switcher). It currently compiles to under 4 KiB of
object code. This small size is accomplished by providing only a small set of
features that can be used as building blocks for other tasks.

For example, some embedded operating systems provide features such as
message queues in their kernel. In CHERIoT RTOS, these are provided by a
separate library, which relies on the futex (see Section 6.5) facility exposed by
the scheduler to allow a producer to block when the queue is full and allow
consumers to block when the queue is empty.

Futexes are the onlymechanism that the scheduler provides for blocking.
Interrupts are mapped to futexes and so threads wait for hardware or soft-
ware events in exactly the same way. This narrow interface and clear separa-
tion of concerns helps improve overall system security.

2.4. Sharing memory from the allocator
The ̑nal core component is the memory allocator, which provides the heap
used for all dynamic memory allocations. This is discussed in detail in Chap-
ter 7. Sharing memory between compartments in CHERIoT requires nothing
more than passing pointers (until you start to add availability requirements
in the presence of mutual distrust). This means that you can allocate objects

2. The RTOS Core

34

(or complex object graphs) from a few bytes up to the entire memory of the
system and share them with other compartments.

The allocator has access to the shadow bitmap and hardware revocation
engine that enforce temporal safety for the heap, and is responsible for set-
ting bounds on allocated memory. It is therefore trusted for con̑dentiality
and integrity ofmemory allocated from the heap. If it incorrectly sets bounds,
a compartment may gain access to memory belonging to another allocation.
If it incorrectly con̑gures revocation state or reuses memory too early then
a use-after-free bug may become exploitable.

The allocator is not able to bypass capability permissions, it simply holds
a capability that spans the whole of heap memory. As such, it is in the TCB
only with respect to heap allocations. It cannot access globals (or code) held
in other compartments so a compartment that does not use the heap does
not need to trust the allocator.

The allocator also provides a rich set of mechanisms (described in Chapter
7) for two mutually distrusting compartments to ensure that memory is not
deallocated at inconvenient times.

2.5. Building a C/C++ environment
So far, this chapter has discussed the components of the system that provide
distinct trust domains. CHERIoT RTOS also provides several shared libraries. As
discussed in Section 1.9, CHERIoT shared libraries do not have private globals,
they provide functions that can be invoked frommultiple compartments but
which has no mutable state of its own.

A C freestanding environment needs a small set of standard-library func-
tions to exist. These are memcpy, memset, and so on. The compiler may insert
di̛erent calls to these for things like struct assignment or initialisation, and
any C code may assume that they exist.

These functions are fairly small (less than 0.5 KiB), but we do not want
every compartment that contains them to have to include a copy of them be-
cause that small size can add up quickly when you have very large numbers
of compartments. Instead, the RTOS includes a freestanding library that in-
cludes these functions.

C++ expects slightly more from a freestanding environment. CHERIoT
RTOS does not provide support for exceptions, but does support thread-safe
initialisation of statics. In C++, function-local static variables that have non-
trivial constructors are initialised lazily the ̑rst time that they are invoked.
The compiler emits a guard word that is used to mark whether the object

2.5. Building a C/C++ environment

35

is initialised and to act as a lock to protect initialisation. The compiler also
emits a branch on the initialised bit at the point where the variable comes
into scope. In the uninitialised case, this inserts a call to __cxa_guard_ac-
quire to acquire the lock and then a call to __cxa_guard_release to release
the lock. The acquire function also checks whether another thread has ini-
tialised the variable between the initial check and the call, preventing double
initialisation. These are provided by the cxxrt library.

In environments that support exceptions, there is a third
function for static initialisation. The __cxa_guard_abort func-
tion is calledwhen a constructor throws an exception. This is not
supported on CHERIoT.

For both C and C++ (and other languages that use the same compiler back
end), there are some sequences that compilers prefer to generate as calls to
helper functions. For example, if you divide one 64-bit number by another,
this is a single operator in C. On most 64-bit processors, it's a single divide
instruction but on 32-bit processors it requires amuch longer sequence. Simi-
larly, GCC andClang provide a population count built-in function that examines
an integer and counts the number of bits that are set to one. This is a single
instruction on most modern application processors, but requires some shift-
ing and masking on microcontrollers.

CHERIoT RTOS provides the crt library to implement these functions. Not
every compartment will need all of them, but the library is around 1.5 KiB
of code and so duplicating it across every compartment that does need them
would be likely to increase code size signȋcantly.

Although the code sizes in this section may look small, moving a function
to a separate compartment typically adds only a handful of bytes to the ̑nal
binary size. It's quite feasible to have a compartment that is of the order of a
hundred bytes in total size. Adding another copy of a function such as memcpy
into such a small compartment, rather than simply calling the shared-library
version, could more than double the overhead of extracting a function into a
library.

2.6. Supporting atomic operations
C11 and C++11 introduced atomic operations. In C, these use the _Atomic
qualȋer, in C++ they use the std::atomic<> template. Recently, these were
somewhat unȋed so that _Atomic(T) can be a macro that expands to

2. The RTOS Core

36

std::atomic<T> when compiling in C++ mode and a built-in type qualȋer
in C mode. In both languages, these are often referred to as the C++11 model
because the C++ version was introduced ̑rst and then ported to C.

Compilers implement these with a set of built-in functions that, on most
application cores, are lowered in the back end to atomic instructions. Most
microcontrollers are single core and so may lack atomic instructions. The
CHERIoT Ibex, for example, does not implement any atomic instructions. This
does not matter because atomic instructions need to be atomic only with re-
spect to the CPU core itself.

On single-core systems, atomic operations can be implemented by simply
disabling interrupts, performing the read-modify-write sequence, and then
enabling interrupts. As we saw in Section 1.7, CHERIoT has a simple mecha-
nism for allowing a single function to run with interrupts disabled, without
granting it the power to arbitrarily disable interrupts. Thismechanismmakes
it possible to implement the atomic helpers as trivial C functions that just do
the non-atomic operations but run with interrupts disabled. Each atomic op-
eration on 1, 2, 4, and 8-byte values is dȇned as a separate function.

On larger cores, these simple helpers are unnecessary, but C and C++ spec-
ȋed that any type could be atomic. Operations such as load, store, exchange
and compare-and-exchange are expected to work even if the object is enor-
mous. The compiler expects functions that implement these operations on
arbitrary-sized data.

⚠

For types larger than a capability, CHERIoT's representations
of _Atomic(T) and std::atomic<T> di̛er. The C version will use
the variable-sized atomic helpers that run with interrupts dis-
abled. The C++ version uses an inline lock in the object and per-
forms atomic operations by acquiring and releasing the lock as
needed. This prevents the C++ version from monopolising the
CPU and breaking realtime guarantees but breaks interoperabil-
ity between the two languages.

In general, it is a good idea to avoid _Atomic(T) for any type
that is larger than a pointer in C.

Many ̑rmware images use only a small subset of these sizes. 32-bit atomic
values are common, and are the size supported for the futex operations (see
Section 6.5). The RTOS provides a family of libraries for implementing atom-
ics. The atomic1, atomic2, atomic4 and atomic8 libraries each provide atomic

2.6. Supporting atomic operations

37

operations for one ̑xed-size type. As a convenience, there is also an atom-
ic_fixed pretend library that simply acts as if you'd depended on all of the
̑xed-sized versions. Finally, there is a general atomic library, which also in-
troduces the variable-sized types. The last of these is very rarely used.

2.7. Adding more standard-library functions
A freestanding C is the minimum for an embedded system but it's far from a
pleasant development environment. The C strings.h header contains func-
tions such as strlen and strcpy, which do not depend on any operating-sys-
tem functionality but are also not required by a freestanding environment.
On CHERIoT RTOS, these are provided by the strings library.

Similarly, we provide a minimal implementation of a subset of stdio.h
that is useful for debugging via the stdio library. In most C implementa-
tions there is a single libc or similar that provides all of the standard library.
CHERIoT prefers to decompose this so that ̑rmware images can adopt useful
subsets.

Most of the C++ standard library that we provide is header-only, but where
shared implementations are useful these will be similarly decomposed.

2.8. Exploring other RTOS features
The lib directory in the RTOS SDK contains all of the libraries. Some of these
have been discussed already because they are part of a core environment that
you might expect to be available for any compartment to use.

Others correspond more to operating system features and will be dis-
cussed in later chapters. For example, those related to locking, message
queues, and so on will be discussed in Chapter 6. The features for debugging
are discussed in Chapter 8.

Others, such as the port of the Microvium JavaScript interpreter, are not
discussed in the book at all. This book does not aim to provide an exhaustive
list of everything that the RTOS provides as libraries, and more will be added
after the book is published. Please look in the RTOS repository to see what
has been added.

2. The RTOS Core

38

Chapter 3.
Getting started writing CHERIoT software
Now that you understand the abstract ideas in CHERIoT, you almost certainly
want to start writing some real code. CHERIoT is a complete hardware-soft-
ware platform, which means that you will need at least the following:

• A device or simulator that implements the ISA.
• A copy of the CHERIoT RTOS software to run on the device.
• A CHERIoT toolchain to compile and link the software.

The whole software stack, the ISA specȋcation, and a reference implemen-
tation of a CHERIoT core are all open source and so these should be easy to
acquire.

This is not the complete list of software in the CHERIoT ecosystem. For
example, the auditing tool (see Chapter 10) is separate and there are other
open-source components maintained as part of the project.

3.1. Getting the RTOS source code
CHERIoT RTOS is developed on GitHub. This is also the home for the project's
issue tracker, please report any bugs that you ̑nd there! You will need to
clone this repository to get the latest version.

The RTOS has not quite reached 1.0 at the time of writing. Af-
ter the 1.0 release, you should also be able to download the RTOS
source as a release. Please see the README.md ̑le in the reposi-
tory for the latest instructions.

The RTOS repository uses git submodules for some third-party components.
This means that you must do a recursive clone:
$ git clone --recursive https://github.com/CHERIoT-Platform/
cheriot-rtos
Cloning into 'cheriot-rtos'...

This will create a directory called cheriot-rtos. Inside this you will ̑nd a
directory called sdk, which contains the SDK. There are also some examples
and exercises to help you get started.

If you forgot to do a recursive clone, you can run the following command
from the cheriot-rtos directory to initialise the submodules:
$ git submodule update --init --recursive

39

https://github.com/CHERIoT-Platform/cheriot-rtos

3.2. Using the CHERIoT development container
The CHERIoT project provides a development container, usually referred to as a
dev container. This is an Open Container Initiative (OCI) container image that
has all of the tools required for building CHERIoT software preinstalled. This
includes the toolchain, auditing tools (see Chapter 10) and some simulators
(see Section 3.4).

OCI containers are sometimes referred to as Docker Containers, because
the standards evolved from themodel supported by theDocker tools, but they
are now supported by a range of software including containerd, podman, and
so on. A container instance (often referred to simply as a container) is an iso-
lated environment that is instantiated from a container image. The image is
a ̑lesystem built from a set of layers, which allows di̛erent containers to
share on-disk (and in-cache) space for di̛erent images that share a common
base.

Dev containers are intended to be used with an editor that supports them
but can also be used directly as if they were any other kind of container. Most
of what makes a container image a dev container is not part of the container
image. The RTOS repository contains a .devcontainer/devcontainer.json
̑le that describes how to ̑nd and use the image. This includes scripts to run
when the container is created, editor plugins to install, and so on.

This means that, if you use an editor that supports dev containers directly,
the experience is largely seamless. If you open the RTOS repository in Visual
Studio Code and have the Dev Containers plugin installed, it will prompt you
to reopen the repository in a container. This will then fetch the container for
you, con̑gure plugins for syntax highlighting, autocomplete, and so on.

⚠

If you're using Windows, you may ̑nd that git has mangled
line endings or failed to create symbolic links (which require De-
veloperMode to be enabled). Visual Studio Codewill ơer an op-
tion to clone the repository in a newvolume. Docker andPodman
on Windows run containers in a Linux virtual machine and vol-
umes are implemented as folders in the VM's ̑lesystem, rather
than as Windows folders mounted into the VM. You will proba-
bly ̑nd that this works better.

If, like me, your preferred development environment is a lightly mod-
ernised version of a 1970s minicomputer, you can still use the dev container.
The container image is ghcr.io/cheriot-platform/devcontainer:latest.

3. Getting started writing CHERIoT software

40

You can run this directly from the directory where you checked out the RTOS
repository:
$ docker run --rm -it \
--mount \
source=$(pwd),target=/home/cheriot/cheriot-rtos,type=bind \
ghcr.io/cheriot-platform/devcontainer:latest
This command will create a single instance of the container with the cur-

rent directory mounted as /home/cheriot/cheriot-rtos. This creates an
ephemeral instance. You can create persistent instanceswith docker create.

In the dev container, all of the CHERIoT tools are installed in /cheriot-
tools/bin/.

The dev container also exists to support GitHub Code Spaces.
These run a Visual Studio Code instance in a browser, attached
to a dev container deployed in an Azure VM. If you create a
Code Space from the CHERIoT RTOS repository, it will be set up
with everything that you need to develop for CHERIoT in the
browser. GitHub Code Spaces are a goodway to start playingwith
CHERIoT, but the free tier is limited to 120 CPU hours (60 hours
on the smallest VM tier) so you will probably want to install the
toolchain locally for serious development.

3.3. Setting up a development environment
Having a copy of the RTOS software does not enable you to build it. You will
also need a toolchain: a compiler, linker, and other associated tools that can
take source code and turn it into a ̑rmware image that can run on a device.
If are using the dev container, these tools are all installed for you.

The CHERIoT toolchain is based on LLVM, which used to stand for 'Low
Level VirtualMachine' until it became clear that none of thosewords actually
applied to the project and it is now just a name. LLVM is a generic set of build-
ing blocks forwriting compilers, structured around the LLVM Intermediate Rep-
resentation (LLVM IR). It includes a mature C/C++ front end, a component that
transforms C and C++ (and Objective-C) into LLVM IR. This front end, clang,
is the default compiler on Apple platforms, Android, and FreeBSD. LLVM also
includes a linker, lld. These two are su̕cient to turn source code into some-
thing that can run on a system. LLVM also provides some other components
that are useful for development. For example, llvm-objdump is used to disas-
semble a binary, which is useful when you have some telemetry that tells you

3.3. Setting up a development environment

41

that you've taken a CHERI bounds exception at address 0xbaadc0de but you
would quite like to know what that corresponds to in the source code where
youmight be able to ̑x the issue. It also includes llvm-objcopy, which is used
on some targets to turn an Executable and Linkable Format (ELF) ̑le into a raw
stream of bytes to be loaded into memory.

The CHERIoT LLVM toolchain aims to upstream all of the
CHERIoT support in mainline LLVM. We hope to have the major-
ity of this work done in 2025, so by the time that you read this it's
possible that a generic LLVM install will be su̕cient. We expect
to do new-feature development in the CHERIoT LLVM repository
so you may prefer to use it even if upstream works.

You can build LLVM yourself, though it takes quite a lot of CPU time and
memory. Make sure you have at least 10-20 GiB of disk space available if
you want to do this. You will ̑nd instructions in the CHERIoT RTOS Get-
ting Started guide. Generally, building the toolchain yourself is recommended
only if you have software supply-chain concerns or if you are working on the
toolchain. For everyone else, it's better to use a pre-built version from the dev
container.

These days, a compiler is expected to do more than simply compile code.
It is also expected to talk the language server protocol (LSP) and provide syntax
highlighting, autocompletion, cross-referencing, and so on.

The build system used by CHERIoT RTOS is intended to make this easy to
support. Figure 2 shows the result in Visual Studio Code. All of the CHERIoT-
specȋc extensions (see Chapter 4) are correctly highlighted.

This support is not limited to Visual Studio Code. It can work with any
editor that supports the language-server protocol. The parsing code from
the clang front end is also part of the clangd dæmon, which implements the
server part of this protocol.

The dev container includes a .vimrc that (if you install Vim) uses theAsyn-
chronous Lint Engine plugin to connect to our clangd build. Simply run :Plu-
gInstall in Vim to install it.

C and C++ are more complex than many languages for syntax highlighting
and cross references. Consider even a simple hello-world C program, which
starts with #include <stdio.h>. Where does stdio.h come from? That typ-
ically depends on command-line arguments passed to the compiler. For na-
tive compilation, there may be some good places to guess (such as /usr/in-
clude on *NIX platforms) but for cross compilation, this is harder. This gets

3. Getting started writing CHERIoT software

42

https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/docs/GettingStarted.md#building-cheriot-llvm
https://github.com/CHERIoT-Platform/cheriot-rtos/blob/main/docs/GettingStarted.md#building-cheriot-llvm
https://github.com/dense-analysis/ale
https://github.com/dense-analysis/ale

Fཥ༥ၸျໞ 2. Visual Studio Code with clangd integration for syntax highlighting
and cross-referencing.

more complexwith code that referencesmacros passed on the command line.
Without knowing the command line for the compiler, the syntax highlighter
can't even tell the type of these identȋers.

Clang works around this with a JSON compilation database. This is a JSON
̑le that provides the command line used to compile each ̑le. When clangd

is asked to open a ̑le, it searches up the directory tree until it ̑nds a com-

pile_commands.json ̑le and uses it to determine how to open the ̑le.
For CHERIoT, this will be di̛erent for each project. When you create the

dev container for the ̑rst time froman editor that supports dev containers, it
will run a script that generates these for the core RTOS and for the examples
and exercises. If you launched the dev container yourself, you can run this

3.3. Setting up a development environment

43

script yourself. You will ̑nd it in scripts/generate_compile_commands.sh
in the RTOS repository.

This script simply invokes xmake, which we'll see in more detail in Section
3.5. For your own projects, run the following command:
$ xmake project -k compile_commands

This must be run after the xmake con̑gure step, so that the build system
knows how to build each ̑le and is then able to communicate this to clangd.

3.4. Choosing an implementation
You should now have everything installed to be able to build a ̑rmware im-
age. The next step is to be able to run one. This means some implementation
of the CHERIoT Instruction Set Architecture (ISA).

The CHERIoT ISA is another open-source project maintained as part of the
CHERIoT Platform organisation. As with other modern instruction sets, this
is formally specȋed in an ISA modelling language, in our case Sail. Sail (a
name, not an acronym) can export to various theorem provers and has some
built-in support for running SMT queries, which we use to check some prop-
erties about the ISA automatically. It can also generate a simulator. We use
this simulator as our gold model: it is a reference implementation of how the
architecture should behave and so can be used to compare behaviour across
implementations.

Sail is one of several emulators or simulators included in the dev con-
tainer. The CHERIoT-SAFE (Small And Fast FPGA Emulator) project is the
testbed for the CHERIoT Ibex, the reference implementation of the CHERIoT
ISA. Both of these projects are maintained by Microsoft. CHERIoT-SAFE can
target the Arty A7 low-cost FPGA development board and also build a soft-
ware simulation using verilator.

The CHERIoT Ibex is, at the time of writing, the only available core that
supports the CHERIoT ISA, though we expect more to appear in the next
few years. The Ibex is a three-stage in-order core, which is optimised for
area, rather than performance. As part of the original CHERIoT research
project, we also added the CHERIoT extensions for Flute, a RISC-V core imple-
mented in BlueSpec. Flute was not production quality, but did demonstrate
that a ̑ve-stage core that was (slightly) more optimised for performance
could eliminate most of the CHERIoT-specȋc overhead. Ibex is expected to
be slower than a similar-complexity non-CHERI microcontroller, but is only
very slightly larger.

3. Getting started writing CHERIoT software

44

https://github.com/rems-project/sail

Google has also contributed an emulator based on their MPACT simula-
tion environment. MPACT is intended for integration with Renode for simu-
lating complex SoCs. Google has created a clean-slate implementation of the
CHERIoT ISA in this. This is currently, by quite a large margin, the fastest of
the available simulators or emulators. The Sail model is directly translated
from the formal model and typically manages 200–400 KIPS (thousand in-
structions per second) on a fast machine. The SAFE simulator is a cycle-accu-
rate simulation of a chip and is typically a bit over 50% of the performance of
Sail. The MPACT simulator can usually manage over 5 MIPS, at least an order
of magnitude faster than Sail.

Beyond software simulators there are currently two mature options for
FPGA simulation. The SAFE project, as previously mentioned, can be run on
the Arty A7. Unfortunately, Microsoft does not provide FPGA bit̑les so you
must build this yourself.

lowRISC has produced an FPGA development board designed specȋcally
for CHERIoT, using a slightly smaller version of the same FPGA as the Arty A7.
This has a rich set of peripherals, including an LCD display. It also has set of
LEDs that can display CHERI exceptions directly for the CHERIoT Ibex core, as
shown in Figure 3. These will glow red and gradually fade when a CHERIoT-
specȋc exception is triggered in software.

At the time of writing, there are not yet any CHERIoT chips commercially
available. SCI Semiconductor has announced their ICENI line of CHERIoT mi-
crocontrollers, the ̑rst of which should be available in 2025.

3.5. Building ̑rmware images
CHERIoT RTOS uses the xmake build system. Xmake is a build system imple-
mented in Lua. It was chosen because it is easy to add new kinds of build tar-
gets.

In a typical system that uses the compile-link process invented by Mary
Allen Wilkes in the 1960s, you compile source ̑les to object code and then
link object code to produce executables. You may have an intermediate step
that produces libraries.

The CHERIoT build process was designed to enable separate compilation
and binary distribution of components. Each source ̑le is compiled either
for use in a shared library or for use in a specȋc compartment. This means
that, when building compartments, the compiler invocation must know the
compartment in which the object ̑le will be used.

3.5. Building ̑rmware images

45

https://xmake.io/#/

Fཥ༥ၸျໞ 3. CHERIoT exception LEDs on the Sonata FPGA development board.
Next, compartments and libraries are linked. This requires a special invo-

cation of the linker that produces a relocatable object ̑le with the correct
structure. At this point, the only exported symbols are those for exported
functions and the only undȇned symbols should be those for MMIO regions
or exports from other compartments (see Chapter 5 for more information).

The build system produces a .library or .compartment ̑le
for each shared library and each compartment.

In theory, these can be distributed as binaries and linked into a ̑rmware
image but this is not yet handled automatically by the build system.

3. Getting started writing CHERIoT software

46

The ̑nal link step produces a ̑rmware image. It also produces the JSON
report that describes all cross-compartment interactions and is used for au-
diting.

Using the RTOS build system involves writing an xmake.lua ̑le that de-
scribes the build. This starts with some boilerplate:

4 set_project("CHERIoT example")
5
6 sdkdir = os.getenv("CHERIOT_SDK") or
7 "../../cheriot-rtos/sdk/"
8 includes(sdkdir)
9
10 set_toolchains("cheriot-clang")

Lཥၑၣཥ࿏༥ 1. Build system code for importing the CHERIoT RTOS SDK
[from: examples/hello_world/xmake.lua]

The set_project call gives a name to the project.
Lines 6–8 import the RTOS SDK. This ̑rst tries to use the CHERIOT_SDK en-

vironment variable and, if not, tries a relative ̑le. The sdkdir variable should
point to the location of the sdk directory from the RTOS repository. Finally,
line 10 selects the CHERIoT toolchain. Ideally this line would not be needed,
but xmake's scoping rules require it to be provided here.

This boilerplate snippet will exist at the top of most xmake.lua ̑les for
CHERIoT. Only the name of the project (and possibly the path to the SDK) will
be di̛erent.

The SDK ̑le provides rules for building the various kinds of CHERIoT com-
ponents (compartments, libraries, and ̑rmware) and also includes all of the
libraries that are part of the RTOS. These libraries include the core defini-
tions for a freestanding C implementation (memcpy and friends), the atomic
helpers for cores without atomic instructions, and the C runtime things that
are called from compiler builtins. See the lib directory in the SDK for a full
list.

If you want your ̑rmware built to support running on more than one
CHERIoT implementation then you will typically want to expose a build-con-
̑guration option that selects the target board, as shown in Listing 2. This
exposes a --board option at the con̑gure stage.

You can set a default and we use "sail" here for the simulator build from
our Sail formal model of the ISA. This refers to a board description ̑le (see
Chapter 12). If you're usually targeting a particular hardware platform, set-
ting the default here allows users to avoid specifying it manually on every

3.5. Building ̑rmware images

47

14 option("board")
15 set_default("sail")

Lཥၑၣཥ࿏༥ 2. Build system code for allowing the board to be selected at con̑gure
time [from: examples/hello_world/xmake.lua]

build. If you're always targeting a particular hardware platform then you can
avoid this entirely.

Next, you need to add any compartments and libraries that are specȋc to
this ̑rmware image. In most cases, you can do this in just two lines, the ̑rst
providing the name of the compartment and the second providing the list of
̑les, as shown in Listing 3. For this example, we'll have two compartments.
One is our entry point, the other is a function that we'll use as a simple ex-
ample of a cross-compartment call.

19 -- An example compartment that we can call
20 compartment("example_compartment")
21 add_files("compartment.cc")
22
23 -- Our entry-point compartment
24 compartment("hello")
25 add_files("hello.cc")

Lཥၑၣཥ࿏༥ 3. Build system code for building compartments
[from: examples/hello_world/xmake.lua]

⚠
The name of the compartment in the xmake.luamust match

the name used for the exported function as described in Section
4.1. If they do not match, the compiler will raise an error that a
function is dȇned in the wrong compartment.

This example is going to make a cross-compartment call from the "hello"
compartment to the "example_compartment" compartment and then print
the result using printf, which is provided by the stdio library from theRTOS.
The cross-compartment call is exposed from compartment.hh as shown in
Listing 4. The only di̛erence between this and a normal C/C++ function pro-
totype is the __cheriot_compartment macro. This is explained in detail in
Section 4.1.

The implementation of this function is trivial (see Listing 5), it just re-
turns 42. Note that, aside from the annotation from the function prototype,
we don't need any changes to expose this for use from other compartments.

3. Getting started writing CHERIoT software

48

7 /**
8 * Example of a function in a compartment.
9 */
10 __cheriot_compartment(
11 "example_compartment") int exported_function(void);

Lཥၑၣཥ࿏༥ 4. Exporting a function for use by other compartments
[from: examples/hello_world/compartment.hh]

The same is true on the caller's side, as shown in Listing 6. Functions exported
from a compartment are called just like any other C function.

5 #include "compartment.hh"
6
7 int exported_function()
8 {
9 return 42;
10 }

Lཥၑၣཥ࿏༥ 5. A trivial implementation of an exported function
[from: examples/hello_world/compartment.cc]

8 /// Thread entry point.
9 void __cheriot_compartment("hello") entry()
10 {
11 printf("compartment returned %d\n", exported_function());
12 }

Lཥၑၣཥ࿏༥ 6. A simple compartment entry point that does a cross-compartment
call [from: examples/hello_world/hello.cc]

The entry function is also annotated as a function exported from a com-
partment. This is because it's a thread entry point, a function that is called at
the start of a thread. In CHERIoT RTOS, threads are statically dȇned. This is
described in more detail in Chapter 6.

Returning to the build system, Listing 7 shows how the firmware block
dȇnes everything that's combined together to create a ̑rmware image.
First, the add_deps lines are dȇning the compartments and libraries that are
linked. The ̑rst add_deps adds two libraries provided by the RTOS, imple-
menting the core functions for a freestanding C environment and a minimal
subset of stdio.h functions, respectively. The next add_deps adds the two
compartments that we dȇned earlier.

Not all of themetadata that we set can be dȇned in the declarative syntax
of xmake, and so we have to implement a function using the on_load hook
to set the remaining properties. The "board" property is set from the option

3.5. Building ̑rmware images

49

that we declared. This is where, if you don't need to support multiple targets,
you could directly specify the board that you wish to target.

29 -- Firmware image for the example.
30 firmware("hello_world")
31 -- RTOS-provided libraries
32 add_deps("freestanding", "stdio")
33 -- Our compartments
34 add_deps("hello", "example_compartment")
35 on_load(function(target)
36 -- The board to target
37 target:values_set("board", "$(board)")
38 -- Threads to select
39 target:values_set("threads", {
40 {
41 compartment = "hello",
42 priority = 1,
43 entry_point = "entry",
44 stack_size = 0x400,
45 trusted_stack_frames = 2
46 }
47 }, {expand = false})
48 end)

Lཥၑၣཥ࿏༥ 7. Build system code for linking the ̑nal ̑rmware image
[from: examples/hello_world/xmake.lua]

The "threads" property is set to an array (as a Lua array literal) of thread
descriptions. Each thread must set ̑ve properties:
compartment

The compartment in which this thread starts.
priority

The priority of this thread. Higher numbers indicate higher priorities.
entry_point

The name of the function for this thread's entry point. This must be a
function that takes and returns void, exported from the compartment
specȋed by the compartment key.

stack_size
The number of bytes of stack space that this thread has allocated.

trusted_stack_frames
The number of trusted stack frames. Each cross-compartment call
pushes a new frame onto this stack and so this dȇnes the maximum
cross-compartment call depth (including the entry point) for this
thread.

3. Getting started writing CHERIoT software

50

3.6. Running ̑rmware images
Many of the board targets provide a run command. This is simple for simula-
tors: it runs the simulator.

If you have built the example from the last section then you can run it
simply with xmake run, like this:
$ xmake run
Running file hello_world.
ELF Entry @ 0x80000000
tohost located at 0x800061e0
compartment returned 42
SUCCESS

The current version of xmake does not automatically build the
target so it's good to get into the habit of using xmake && xmake
run, which will build (if necessary) before running. This is ex-
pected to be changed in a future version of xmake.

In some cases, these commands may depend on external con̑guration.
For example, Sonata has a nice mBed-inspired loader that runs on a Rasp-
berry Pi 2040, which con̑gures the FPGA and loads ̑rmware images. This
exposes the ̓ash ̑lesystem so that you can just copy a ̑rmware ̑le into the
SONATA device and the 2040 will reboot the FPGA and load the ̑rmware. The
run script provided for Sonata looks for the SONATA device in some common
mount locations and, if that fails, simply prints the location of the ̑le and
tells you to copy it yourself.

If you are working in the dev container, the host ̑lesystems are not au-
tomatically available and must be explicitly added. You can add extra mount
locations to the .devcontainer/devcontainer.json ̑le. If you're onmacOS,
the SONATA ̑lesystem will be mounted in /Volumes, so you can add the fol-
lowing snippet (in the top-level object in the JSON ̑le) to expose it to the
container:

"mounts": [
"source=/Volumes/SONATA,target=/mnt/SONATA,type=bind"

]
On other operating systems, modify the source part to the correct loca-

tion. This should prompt for the dev container to be restarted, which is re-
quired for new mount points to take e̛ect.

If you are running the dev container directly, you will need to add this
instruction directly to the invocation of docker or podman. For example, from
the cheriot-rtos directory:

3.6. Running ̑rmware images

51

$ docker run -it --rm \
--mount source=$(pwd),target=/cheriot-rtos,type=bind \
--mount source=/Volumes/SONATA/,target=/mnt/SONATA,type=bind \
ghcr.io/cheriot-platform/devcontainer:latest
/bin/bash
Either of these approaches will mount the SONATA ̑lesystem as /mnt/

SONATA, where the run script for Sonata can ̑nd it.

⚠

On Windows, Docker containers run in WSL2, which is a spe-
cialised Hyper-V virtual machine. Host folders are exposed via
9p over VirtFS. It appears that this is either too slow, or lacks the
correct sync commands, for writes to the Sonata ̓ash storage to
be reliable from Docker on Windows. Docker and Podman both
work reliably for Sonata on Linux and macOS.

The run command typically provides a convenient default. Some simula-
tors provide various options if you invoke them directly. For example, both
the Sail and SAFE simulators provide instruction-level tracing.

The Sail simulator is installed in the dev container as /cheriot-tools/
bin/cheriot_sim. This will directly run an ELF binary, so you can recreate
the behaviour of the xmake run command like this:
$ cheriot-tools/bin/cheriot_sim build/cheriot/cheriot/release/
hello_world
Running file hello_world.
ELF Entry @ 0x80000000
tohost located at 0x800061e0
compartment returned 42
SUCCESS

If you add the --trace ̓ag, you will get a lot more output. This enables
all possible tracing. Every memory access, every register update, and every
executed instruction will be traced. You can select a subset of this by provid-
ing an argument to --trace=. For example, passing --trace=instrwill trace
only instructions. The most useful option here is --trace=exception. This
will provide a line of output for exceptions, which includes the address of the
faulting instruction. This is very useful for ̑nding out where CHERI excep-
tions have happened.

The SAFE simulator is built with Verilator, which requires tracing to be
enabled or disabled as a compile-time option. The dev container therefore in-
stalls two versions cheriot_ibex_safe_sim and cheriot_ibex_safe_sim_-
trace. Unlike the Sail simulator, this cannot simply run an ELF ̑le, it needs
a VHX ̑le for each memory containing a hex dump of the initial contents of

3. Getting started writing CHERIoT software

52

⚠
If you use xmake run to run a simulator then it will run only

the simulator that the ̑rmware image was built for. If you in-
voke a simulator directly, you will not get this check. Most tar-
gets have su̕ciently di̛erent memory layouts that you cannot
use the same ̑rmware image between them.

that memory. The run script for SAFE ̑rst creates this and then invokes the
simulator. The scripts/ibex-build-firmware.sh script takes the ELF ̑le as
an argument and then creates the firmware directory containing the two re-
quired VHX ̑les. The simulator expects a firmware directory to exist in the
current directory and does not take any arguments.

For both simulators, tracing provides a lot of output and redirecting this
to a ̑le may be useful.

The MPACT simulator also provides an interactive mode, enabled with -i.
This provides a debugging environment. You can use help inside the inter-
active mode to see the commands, which include breakpoints, watchpoints,
and so on.

3.6. Running ̑rmware images

53

Chapter 4.
C/C++ extensions for CHERIoT
The CHERIoT platform adds a small number of C/C++ annotations to support
the compartment model.

4.1. Exposing compartment entry points
Compartments are discussed in detail in Chapter 5. A compartment can ex-
pose functions as entry points via a simple attribute.

The cheri_compartment({name}) attribute specȋes the name of the com-
partment that dȇnes a function. This is used in concert with the -cheri-
compartment= compiler ̓ag. This allows the compiler to knowwhether a par-
ticular function (which may be in another compilation unit) is dȇned in the
same compartment as the current compilation unit, allowing direct calls for
functions in the same compilationunit and cross-compartment calls for other
cases.

This can be used on either dȇnitions or declarations but is most com-
monly used on declarations.

If a function is dȇned while compiling a compilation unit belonging to
a di̛erent compartment, the compiler will raise an error. In CHERIoT RTOS,
this attribute is always used via the __cheriot_compartment({name})macro.
This makes it possible to simply use #define __cheriot_compartment(x)
when compiling for other platforms.

Most of the time, you will not need to worry about the compiler ̓ags di-
rectly. The xmake provided by CHERIoT RTOS will set the compiler ̓ags for
you automatically. Listing 8 shows the prototype of a trivial function that in-
crements an integer that is private to a compartment.

7 /**
8 * A function to increment a private variable inside a
9 * compartment.
10 */
11 __cheriot_compartment(
12 "example_compartment") int increment();

Lཥၑၣཥ࿏༥ 8. Exporting a function for use by other compartments from a header.
[from: examples/compartment_annotation/interface.h]

55

The body of this function is then shown in Listing 9. Note that this does
not require the attribute, it is inherited from the prototype. If you forget to
include the header, you will see a linker error about a missing symbol.

13 int increment()
14 {
15 counter++;
16 return 0;
17 }

Lཥၑၣཥ࿏༥ 9. The body of a function that is exposed for cross-compartment calls.
[from: examples/compartment_annotation/compartment.cc]

The build system specȋes the -cheri-compartment= ̓ag based on the
compartment target dȇnition in the xmake.lua. Listing 10 shows this for the
simple example compartment.

15 -- An example compartment that we can call
16 compartment("example_compartment")
17 add_files("compartment.cc")

Lཥၑၣཥ࿏༥ 10. Build system code for dȇning a compartment.
[from: examples/compartment_annotation/xmake.lua]

If you get the compartment name wrong, the compiler will generate an
error. For example, if you change the compartment name in Listing 8 to
"wrong_compartment", you will see the following error when compiling com-
partment.cc, which contains the dȇnition of this function:
error: compartment.cc:21:5: error: CHERI compartment entry declared
for compartment 'wrong_compartment' but implemented in
'example_compartment' (provided with -cheri-compartment=)

21 | int monotonic(Callback callback)
| ^

4.2. Passing callbacks to other compartments.
The cheri_callback attribute specȋes a function that can be used as an en-
try point by compartments that are passed a function pointer to it. This at-
tribute must also be used on the type of function pointers that hold cross-
compartment invocations. Any time the address of such a function is taken,
the result will be a sealed capability that can be used to invoke the compart-
ment and call this function.

4. C/C++ extensions for CHERIoT

56

The compiler does not know,when calling a callback,whether
it points to the current compartment. As such, calling a CHERI
callback function will always be a cross-compartment call, even
if the target is in the current compartment.

This attribute can also be used via the __cheriot_callbackmacro, which
allows it to be dȇned away when targeting other platforms.

Listing 11 shows both how to declare a typedef for a function pointer type
that can be used for cross-compartment callbacks and how to expose a func-
tion that takes one. This is a simple function that will increment a private
counter and invoke the callback.

16 /**
17 * A cross-compartment callback that takes an integer and
18 * returns an integer.
19 */
20 typedef __cheriot_callback int (*Callback)(int);
21
22 /**
23 * Example of a function that takes a cross-compartment
24 * callback as an argument.
25 */
26 __cheriot_compartment("example_compartment") int monotonic(
27 Callback);

Lཥၑၣཥ࿏༥ 11. Exposing a function that takes a cross-compartment callback for use
by other compartments. [from: examples/compartment_annotation/interface.h]

The implementation of this function (Listing 12) calls it just as it would
call any other function pointer. The di̛erence is dealt with entirely by the
compiler. For a normal call, the compiler will emit a simple jump-and-link to
the address, whereas in this case it will invoke the switcher (see Section 2.2)
with the callback as an extra argument.

Every function that's exposed for cross-compartment invocation has an
entry in the compartment's export table, containing the metadata that the
switcher will use. Every function that is directly called by another compart-
ment will then have an entry in the calling compartment's import table that
the loader will initialise with a sealed capability to the export table entry.
Callback functions work in a similar way, except that the import table entry
is for the compartment that exposes the callback.

When you take the address of a callback function, the compiler simply in-
serts a load of the import table entry, giving exactly the same kind of sealed

4.2. Passing callbacks to other compartments.

57

capability that you would use for direct cross-compartment calls. At the call
site, the only di̛erence between a direct cross-compartment call and a call-
back is that the former will contain the load from the import table, whereas
the latter will simply move the callback into the register that is used to pass
the callee to the switcher.

21 int monotonic(Callback callback)
22 {
23 return callback(++counter);
24 }

Lཥၑၣཥ࿏༥ 12. The body of a function that invokes a cross-compartment callback.
[from: examples/compartment_annotation/compartment.cc]

The callback is then declared just like any other function, but with the
correct attribute, as shown in Listing 13.

The function attributes can be provided either before the
start of the function or before the function name (after the re-
turn type). In some cases, the latter can avoid ambiguity (the at-
tribute dȇnitely applies to the function, not to the return type),
but both are equivalent the rest of the time.

8 int __cheriot_callback callback(int counter)
9 {
10 printf("Counter value: %d\n", counter);
11 return 0;
12 }

Lཥၑၣཥ࿏༥ 13. A function that can be invoked as a cross-compartment callback.
[from: examples/compartment_annotation/entry.cc]

The callback function is passed just like any other function pointer, as
shown in Listing 14. Note that the twoways of taking the address of a function
in C/C++ (callback and &callback) are equivalent. Both work; some people
prefer the former because it is more concise, others prefer the latter because
it is a visual marker that a pointer is being constructed.

When you run this example, you should see:
Counter value: 2
Counter value: 3

The callback is invoked in the compartment that implements it and has
access to the copy of the counter (passed by value) that the caller provides,
but it cannot modify the counter.

4. C/C++ extensions for CHERIoT

58

19 increment();
20 monotonic(callback);
21 monotonic(&callback);

Lཥၑၣཥ࿏༥ 14. A function that can be invoked as a cross-compartment callback.
[from: examples/compartment_annotation/entry.cc]

4.3. Exposing library entry points
Libraries are discussed in detail in Chapter 5. Like compartments, they can
export functions via a simple annotation. Unlike compartments, they are sim-
ply a mechanism for code sharing, not a security boundary. Libraries do not
have mutable globals and each call to a library is assumed to have access to
everything in the caller. Libraries are intended to provide almost the same
abstraction as if you'd copied and pasted code into each compartment that
calls them, though without the accompanying code duplication.

The cheri_libcall attribute specȋes that this function is provided by a
library (shared between compartments). This attribute is implicit for all com-
piler built-in functions, including memcpy and similar freestanding C environ-
ment functions. As with cheri_compartment(), thismay be used on both def-
initions and declarations.

Unlike the compartment annotation, the library annotation does not spec-
ify the library that provides the function (though you can validate this later
with the auditing tools, as described in Chapter 10). This allows library func-
tions to be moved between libraries easily, a refactoring that does not a̛ect
most of the security model. For example, the RTOS used to provide a library
that implemented all of the helpers for atomic operations. This was later split
into separate libraries for di̛erent sized objects, allowing code to link only
the atomic operations for types that it uses.

This attribute can also be used via the __cheriot_libcall macro, which
allows it to be dȇned away when targeting other platforms. This is how it is
used in Listing 15, which declares a simple library function.

7 /**
8 * A simple example library function.
9 */
10 __cheriot_libcall void library_function();

Lཥၑၣཥ࿏༥ 15. A declaration of a library function
[from: examples/library_annotation/interface.h]

4.3. Exposing library entry points

59

As with the compartment annotations, these don't need to be placed on
both the prototype and the declaration. Listing 16 shows the dȇnition,which
omits the attribute.

10 void library_function()
11 {
12 // Print the stack capability from within the library.
13 Debug::log("Stack pointer: {}",
14 __builtin_cheri_stack_get());
15 }

Lཥၑၣཥ࿏༥ 16. A dȇnition of a library function
[from: examples/library_annotation/library.cc]

Both the library function and the call site, shown in Listing 17, use the
CHERIoT RTOS debugging APIs that are described in detail in Chapter 8.
Among other things, these allow you to pretty-print capabilities. These use a
compiler builtin to get the capability to the stack and print it.

11 /// Thread entry point.
12 void __cheriot_compartment("entry") entry()
13 {
14 // Print the current stack capability.
15 Debug::log("Stack pointer: {}",
16 __builtin_cheri_stack_get());
17 // Call the function exported from the library.
18 library_function();
19 }

Lཥၑၣཥ࿏༥ 17. Calling a simple library function.
[from: examples/library_annotation/entry.cc]

When you run this example, you should see the stack capability printed
twice, once by the entry compartment and once by the library. The library is
called from the compartment so you should see the stack pointer move, but
the bounds will remain the same. When you run it, you should see something
like this:
Entry compartment: Stack pointer: 0x80000af0 (v:1
0x80000720-0x80000b20 l:0x400 o:0x0 p: - RWcgml -- ---)
Library: Stack pointer: 0x80000ad0 (v:1 0x80000720-0x80000b20
l:0x400 o:0x0 p: - RWcgml -- ---)

The bounds (0x80000720-0x80000b20) remain constant across the call.
This means that malicious code in the library could inspect or modify every-
thing on the caller's stack. In contrast, if you try the same thing in a compart-
ment, you will see this stack truncated.

4. C/C++ extensions for CHERIoT

60

Try modifying this example to place the function in a compartment in-
stead of a library. Don't forget to modify the xmake.lua ̑le to change the
library target to compartment.

4.4. Interrupt state control
The cheriot_interrupt_state attribute (commonly used as the C++11 / C23
attribute cheriot::interrupt_state) is applied to functions and takes an
argument that is one of the following:
enabled

Interrupts are enabled when calling this function.
disabled

Interrupts are disabled when calling this function.
inherit

The interrupt state is unchanged (inherited from the caller) when in-
voking this function.

For most functions, inherit is the default. For cross-compartment calls, en-
abled is the default and inherit is not permitted.

The compiler may not inline functions at call sites that would change the
interrupt state and will always call them via a sentry capability set up by the
loader. This makes it possible to statically reason about interrupt state in lex-
ical scopes.

⚠

If a compartment is able to provide arbitrary interrupt-dis-
abled functions, that compartment is in the TCB for availabil-
ity. It is a good idea to move interrupt-disabled code into library
functions where the contents of the library can be audited and
the exact binary for the interrupt-disabled function can be part
of a software bill of materials (SBOM), which can then allow you to
reason about the whole system's availability guarantees.

If you need to wrap a few statements to run with interrupts disabled, you
can use the convenience helper CHERI::with_interrupts_disabled. This is
annotated with the attribute that disables interrupts and invokes the passed
lambda. This maintains the structured-programming discipline for code run-
ning with interrupts disabled: it is coupled to a lexical scope.

4.4. Interrupt state control

61

Documentation for the with_interrupts_disabled function
template<typename T>
[[cheriot::interrupt_state(disabled)]] auto

with_interrupts_disabled(T &&fn)

Invokes the passed callable object with interrupts disabled.

You need to be very careful using this attribute. Listing 18 shows a very
simple example of how disabling interrupts can have adverse e̛ects. The
spin_for_ticks function in this example will simply spin for the requested
number of ticks, reading the cycle counter until enough time has elapsed.
This is called by a thread entry-point function that runs with low priority,
with increasing tick counts.

The rdcycle64 function reads the cycle timer. The thread_sleep call is
sleeping for a single scheduler tick. This function and themeaning of a sched-
uler tick are explained in more detail in Chapter 6. For now, assume that the
thread is attempting to sleep for the number of cycles shown by the printf
call at the start, outside of the loop.

The other thread in this program is shown in Listing 19. This runs with
high priority and so will always preempt the low-priority thread when it is
able to, but disabling interrupts means that preemption is impossible. Timer
interrupts do not ̑re and so the scheduler cannot interrupt the function.

When you run this, you will see that the actual time spent sleeping in-
creases each iteration:
One tick is 10000 cycles
low-priority thread running
Cycles elapsed with high-priority thread yielding: 23461
low-priority thread running
Cycles elapsed with high-priority thread yielding: 33450
low-priority thread running
Cycles elapsed with high-priority thread yielding: 43449
low-priority thread running
Cycles elapsed with high-priority thread yielding: 53448

The low-priority thread is allowed to start runningwhen the high-priority
thread yields but then prevents any other thread in the system from running.
If you did anything like this in a realtime system, this would guarantee that
you would would miss your realtime deadlines.

4. C/C++ extensions for CHERIoT

62

10 /// High-priority thread entry point.
11 void __cheriot_compartment("interrupts") high()
12 {
13 printf("One tick is %d cycles\n", TIMERCYCLES_PER_TICK);
14 while (true)
15 {
16 // Get the current cycle time
17 uint64_t start = rdcycle64();
18 // Sleep for one scheduler tick
19 Timeout t{1};
20 thread_sleep(&t);
21 // Report how long the sleep was
22 printf("Cycles elapsed with high-priority thread "
23 "yielding: %lld\n",
24 rdcycle64() - start);
25 }
26 }

Lཥၑၣཥ࿏༥ 19. A high-priority thread that is starved by an interrupts-disabled
function called from a low-priority thread.
[from: examples/interrupts_disabled/interrupts.cc]

30
31 /**
32 * A function that runs with interrupts disabled and
33 * consumes CPU for the requested number of ticks.
34 */
35 [[cheriot::interrupt_state(disabled)]] void
36 spin_for_ticks(uint32_t ticks)
37 {
38 uint64_t end =
39 rdcycle64() + (uint64_t(ticks) * TIMERCYCLES_PER_TICK);
40 while (rdcycle64() < end) {}
41 }
42
43 /// Low-priority thread entry point.
44 void __cheriot_compartment("interrupts") low()
45 {
46 int sleeps = 2;
47 while (true)
48 {
49 printf("low-priority thread running\n");
50 spin_for_ticks(sleeps++);
51 }
52 }

Lཥၑၣཥ࿏༥ 18. A low-priority thread that uses an interrupts-disabled function to
consume CPU. [from: examples/interrupts_disabled/interrupts.cc]

4.4. Interrupt state control

63

The key problem here is that the interrupts-disabled function has an un-
bounded run time. It will consume the CPU for a data-dependent amount of
timewith no practical upper bound.When you are building realtime systems,
even very soft realtime systems, you must ensure that the worst-case execu-
tion time for responding to events is bounded.

4.5. Importing MMIO access
The MMIO_CAPABILITY({type}, {name}) macro is used to access memory-
mapped I/O devices. These are specȋed in the board dȇnition ̑le by the
build system. The DEVICE_EXISTS({name}) macro can be used to detect
whether the current target provides a device with the specȋed name.

The type parameter is the type used to represent the MMIO region. The
macro evaluates to a volatile {type} *, so MMIO_CAPABILITY(struct UART,
uart) will provide a volatile struct UART * pointing (and bounded) to
the device that the board dȇnition exposes as uart. This is precisely what
happens in Listing 20, which prints 'Hello world!' to the UART directly.

10 static const char hello[] = "Hello world!\n";
11 for (char c : hello)
12 {
13 MMIO_CAPABILITY(Uart, uart)->blocking_write(c);
14 }

Lཥၑၣཥ࿏༥ 20. Retrieving a pointer to a UART's MMIO space and using it.
[from: examples/raw_uart/raw_uart.cc]

4.6. Sealing opaque types
Sealed capabilities were introduced in Section 1.6. They provide a simple
hardware-enforced mechanism for providing type-safe opaque types.

You normally implement opaque types in C/C++ by forward-declaring a
struct type and then handing out pointers to that type. For example, you
might write something like this:
struct MyType;
MyType *create_my_type();

This function will return a new instance of some type, but the caller can't
see the implementation details. They can, of course, cast it to a char* or sim-
ilar and read and write the underlying data. The opaque type is a software-
engineering boundary telling the caller that they should not depend on the
representation of this type.

4. C/C++ extensions for CHERIoT

64

Sealing on CHERIoT makes it easy to turn that software-engineering
boundary into a security boundary. The same interface can be written for
CHERIoT as:
struct MyType;
MyType *__sealed_capability create_my_type();

The returned value is marked as being tamper proof. The hardware en-
sures that the caller cannot modify the underlying object. If the caller casts
this to a char* and tries to modify it then they will get a run-time trap. The
__sealed_capability qualȋer ensures that callers don't do this acciden-
tally. The compiler will error if you try to dereference a sealed capability.

You can implicitly cast the MyType *__sealed_capability to void* but
not to a MyType *. You can explicitly cast away the __sealed_capability
qualȋer but that just lets you compile things that will trap at run time.

The builtins for sealing and unsealing respect these types, as do the RTOS
APIs (Section 7.7) that use them. Thismeans that you canwrite a function that
expects a MyType *__sealed_capability and preserve type safety through-
out your code and untrusted code. When a caller gives you back this kind of
pointer and you unseal it, you will get a MyType * that is either a valid value
or untagged.

4.7. Manipulating capabilities with C builtins
The compiler provides a set of built-in functions for manipulating capabili-
ties. These are typically of the form __builtin_cheri_{noun}_{verb}. You
can read all of the ̑elds of a CHERI capability with get as the verb and the
following nouns:
address

The current address that's used when the capability is used as a
pointer.

base
The lowest address that this authorises access to.

top
The address immediately after the end of the range that this authorises
access to.

length
The distance between the base and the top.

perms
The architectural permissions that this capability holds.

sealed
Is this a sealed capability?

4.7. Manipulating capabilities with C builtins

65

tag
Is this a valid capability?

type
The type of this capability (zero means unsealed).

The verbs vary because they express the guarded manipulation guarantees for
CHERI capabilities. You can't, for example, arbitrarily set the permissions on
a capability, you can only remove permissions. Capabilities can be modȋed
with the nouns and verbs listed in Table 3.

Noun Modȋcation
verb Operation

address set Set the address for the capability.

bounds set
Sets the base at or below the current address
and the length at or above the requested length,
as closely as possible to give a valid capability

bounds set_exact

Sets the base to the current address and the
length to the requested length or returns anun-
tagged capability (one that will trap if used) if
the result is not representable.

perms and
Clears all permissions except those provided as
the argument.

tag clear
Invalidates the capability but preserves all
other ̑elds.

Tຠྲໞ 3. CHERI capability manipulation builtin functions

Setting the object type for sealed capabilities ismore complex and requires
a second capability that authorises sealing. The address ̑eld for capabili-
ties with permit-seal or permit-unseal permissions refers to the object-type
space, rather than the memory address space. The __builtin_cheri_seal

function takes an authorising capability (somethingwith the permit-seal per-
mission) as the second argument and sets the object type of the result to the
address of the sealing capability. Conversely, __builtin_cheri_unseal uses

4. C/C++ extensions for CHERIoT

66

a capability with the permit-unseal permission and an address matching the
object type to restore the original unsealed value.

Most of the time, C code will avoid using the builtins directly and instead
use the wrappers dȇned in cheri-builtins.h. This ̑le contains a set of
macros that wrap the builtins to remove the __builtin_ prȇx.

Althoughmost of themacros in cheri-builtins.hmatch the
names of the underlying builtins, the permissions macros fol-
low the CHERIoT RTOS coding convention of avoiding abbrevi-
ations and so use permissions instead of perms. The predicates
prȇx the operationwith _is so __builtin_cheri_equal_exact
becomes cheri_is_equal_exact.

You can see how to use most of the introspection builtins via their macro
wrappers in Listing 21. This prints a capability, showing its address, tag (valid)
bit, length, bounds, and permissions. The permissions are expanded as the
letters from the tables in Section 1.4. The builtins are thing wrappers around
the instructions, which represent the permissions as a bitmask. Individual
bits must be extracted by a bitwise AND operation.

Listing 22 uses this function to print some initial capabilities from both
heap and stack memory and then manipulates them. First, it explicitly sets
the bounds of the heap capability to 23 bytes, then removes all permissions
except load.

35 // A stack allocation
36 char stackBuffer[23];
37 print_capability(stackBuffer);
38 // A heap allocation
39 char *heapBuffer = malloc(23);
40 print_capability(heapBuffer);
41 // Setting the bounds of a heap capability
42 char *bounded = cheri_bounds_set(heapBuffer, 23);
43 print_capability(bounded);
44 // Removing permissions from a heap capability
45 bounded = cheri_permissions_and(bounded, CHERI_PERM_LOAD);
46 print_capability(bounded);
47 print_capability(heapBuffer);

Lཥၑၣཥ࿏༥ 22. Manipulating capabilities using the C builtin wrappers.
[from: examples/manipulate_capabilities_c/example.c]

When you run this example, you should see something like this (the exact
addresses may vary):

4.7. Manipulating capabilities with C builtins

67

6 void print_capability(void *ptr)
7 {
8 unsigned permissions = cheri_permissions_get(ptr);
9 printf(
10 "0x%x (valid:%d length: 0x%x 0x%x-0x%x otype:%d "
11 "permissions: %c "
12 "%c%c%c%c%c%c %c%c %c%c%c)\n",
13 cheri_address_get(ptr),
14 cheri_tag_get(ptr),
15 cheri_length_get(ptr),
16 cheri_base_get(ptr),
17 cheri_top_get(ptr),
18 cheri_type_get(ptr),
19 (permissions & CHERI_PERM_GLOBAL) ? 'G' : '-',
20 (permissions & CHERI_PERM_LOAD) ? 'R' : '-',
21 (permissions & CHERI_PERM_STORE) ? 'W' : '-',
22 (permissions & CHERI_PERM_LOAD_STORE_CAP) ? 'c' : '-',
23 (permissions & CHERI_PERM_LOAD_GLOBAL) ? 'g' : '-',
24 (permissions & CHERI_PERM_LOAD_MUTABLE) ? 'm' : '-',
25 (permissions & CHERI_PERM_STORE_LOCAL) ? 'l' : '-',
26 (permissions & CHERI_PERM_SEAL) ? 'S' : '-',
27 (permissions & CHERI_PERM_UNSEAL) ? 'U' : '-',
28 (permissions & CHERI_PERM_USER0) ? '0' : '-');
29 }

Lཥၑၣཥ࿏༥ 21. Pretty-printing a capability using the C builtin wrappers.
[from: examples/manipulate_capabilities_c/example.c]

0x80000ae1 (valid:1 length: 0x17 0x80000ae1-0x80000af8 otype:0
permissions: - RWcgml -- -)
0x80006710 (valid:1 length: 0x18 0x80006710-0x80006728 otype:0
permissions: G RWcgm- -- -)
0x80006710 (valid:1 length: 0x17 0x80006710-0x80006727 otype:0
permissions: G RWcgm- -- -)
0x80006710 (valid:1 length: 0x17 0x80006710-0x80006727 otype:0
permissions: - R----- -- -)
0x80006710 (valid:1 length: 0x18 0x80006710-0x80006728 otype:0
permissions: G RWcgm- -- -)

First, note the di̛erence between the permissions on the stack and heap
allocation. The heap allocation has global permission: it may be stored any-
where. The stack allocation lacks global, but has store-local permission,which
allows it to be used to store other capabilities providing they don't have the
global permission. These two conditions ensure that stack pointers (which
lack global) can be stored only on the stack (the only memory that has store-
local permission).

The bounds on the original heap allocation are rounded up to a multiple
of the heap's allocation granule size. The CHERIoT allocator allocates 8-byte

4. C/C++ extensions for CHERIoT

68

chunks, so this is rounded up to 24 (0x18) bytes. For a capability this small,
CHERIoT can precisely represent the desired size and so the bounds-setting
operation succeeds and you can derive a capability with the precise bounds
that we requested.

Next, this removes all permissions except load. This pointer now provides
a read-only view of the data, which cannot be stored anywhere except on the
stack and which cannot be used to load capabilities.

Finally, this example prints the heap allocation again to remind you that
these permissions and bounds apply to the pointer and not to the object. We
have not removed permissions from an object, we have created a pointer that
has fewer permissions to that object. There is no limit to the number of point-
ers that can exist to a single object.

4.8. Comparing capabilities with C builtins
By default, the C/C++ == operator on capabilities compares only the address.

This is subject to change in a future revision of CHERI C. It
makes porting some existing code easier, but breaks the substi-
tution principle (if a == b, you would expect to be able to use b
or a interchangeably).

You can compare capabilities for exact equalitywith the __builtin_cher-
i_equal_exact, or the cheri_is_equal_exactmacro that wraps the builtin.
This returns true if the two capabilities that are passed to it are identical, false
otherwise. Exact equality means that the address, bounds, permissions, ob-
ject type, and tag are all identical. It is, e̛ectively, a bitwise comparison of all
of the bits in the two capabilities, including the tag bits.

You can see the di̛erence between the two in Listing 23. This creates a
capability with a small ơset into an on-stack bưer and then restricts the
bounds and removes permissions from it, then compares them for equality
using both the == operator and the cheri_is_equal_exactmacro.

When you run this example, you should see output that looks something
like this:

4.8. Comparing capabilities with C builtins

69

33 // A stack allocation
34 char stackBuffer[23];
35 char *offset = stackBuffer + 4;
36 print_capability(offset);
37 // Reduce the bounds
38 char *bounded = cheri_bounds_set(offset, 4);
39 print_capability(bounded);
40 printf("Equal? %d\n", bounded == offset);
41 printf("Exactly equal? %d\n",
42 cheri_is_equal_exact(bounded, offset));
43 // Remove permissions
44 char *restricted =
45 cheri_permissions_and(bounded, CHERI_PERM_LOAD);
46 print_capability(restricted);
47 printf("Equal? %d\n", bounded == restricted);
48 printf("Exactly equal? %d\n",
49 cheri_is_equal_exact(bounded, restricted));
50 char *untagged = cheri_tag_clear(restricted);
51 print_capability(untagged);
52 printf("Equal? %d\n", untagged == restricted);
53 printf("Exactly equal? %d\n",
54 cheri_is_equal_exact(untagged, restricted));

Lཥၑၣཥ࿏༥ 23. Comparing two capabilities for equality.
[from: examples/compare_capabilities/example.c]

0x80000ae5 (valid:1 length: 0x17 0x80000ae1-0x80000af8 otype:0
permissions: - RWcgml -- -)
0x80000ae5 (valid:1 length: 0x4 0x80000ae5-0x80000ae9 otype:0
permissions: - RWcgml -- -)
Equal? 1
Exactly equal? 0
0x80000ae5 (valid:1 length: 0x4 0x80000ae5-0x80000ae9 otype:0
permissions: - R----- -- -)
Equal? 1
Exactly equal? 0
0x80000ae5 (valid:0 length: 0x4 0x80000ae5-0x80000ae9 otype:0
permissions: - R----- -- -)
Equal? 1
Exactly equal? 0

First it shows the original capability, which grants complete access to a
stack allocation and has its address four bytes ơset into the object. Then
the bounded capability, which has the same address and permissions, but dif-
ferent bounds. These compare equal with address-based comparison but not
exactly equal.

Next it removes permissions from the derived capability and compares
these. Again, the di̛erence in permissions is not re̓ected in the address-
based equality but is in the exact equality.

4. C/C++ extensions for CHERIoT

70

The ̑nal case is the most interesting and the one where this can be the
most confusing. The last pointer constructed in this example is not a capabil-
ity. This is constructed by clearing the tag, which is the bit that indicates that
the capability-sized word is, in fact, a capability. Losing the tag bit means that
this is not a capability at all, merely 64 bits of data that happen to be loaded
into a capability register. With the C equality operator, this still compares
equal to any of the other capabilities, but the exact-equality comparison fails.

Ordered comparison, using operators such as less-than or greater-than,
always operate with the address. There is no total ordering over capabilities.
Two capabilities with di̛erent bounds or di̛erent permissions but the same
address will return false when compared with either < or >.

This is ̑ne according to a strict representation of the C abstract machine
because comparing two pointers to di̛erent objects is undȇned behaviour.
It can be confusing but, unfortunately, there is no good alternative. Compar-
ison of pointers is commonly used for keying in collections. For example, the
C++ std::map class uses the ordered comparison operators for building a tree
and relies on it working correctly for keys that are pointers. Ideally, these
would explicitly operate over the address, but that would require invasive
modȋcations when porting to CHERI platforms.

You can see the case that can make this confusing in Listing 24. This com-
pares two capabilities using the ordered operators and then exact equality.

58 if (bounded > offset)
59 {
60 printf("bounded > offset\n");
61 }
62 else if (bounded < offset)
63 {
64 printf("bounded < offset\n");
65 }
66 else if (cheri_is_equal_exact(bounded, offset))
67 {
68 printf("bounded exactly equals offset\n");
69 }
70 else
71 {
72 printf("bounded is not greater than, less than, nor "
73 "equal to, offset\n");
74 }

Lཥၑၣཥ࿏༥ 24. Trying to construct an ordering over two capabilities.
[from: examples/compare_capabilities/example.c]

When you run this example, it will print:

4.8. Comparing capabilities with C builtins

71

bounded is not greater than, less than, nor equal to, offset
This highlights that, within the C abstractmachine, there is no good choice

for what == should do on capabilities. In the current version, it breaks the
substitution principle: you cannot use a and b interchangeably if a == b. In
the alternative version, existing code that does a < b and a > b and assumes
that a == b holds if both ordered comparisons fail would now be incorrect.

In general, in new code, you should avoid comparing pointers for anything
other than exact equality, unless you are certain that they have the same base
and bounds. Instead, be explicit about exactly what you are testing. Do you
care if the permissions are di̛erent? Do you care about the bounds? Do you
care if the value is tagged? Or do you just want to care about the address? In
each case, you should explicitly compare the components of the capability
that you care about.

You can also compare capabilities for subset relationships with __built-
in_cheri_subset_test. This returns true if the second argument is a subset
of the ̑rst. A capability is a subset of another if every right that it conveys
is held by the other. This means the bounds of the subset capability must be
smaller than or equal to the superset and all permissions held by the subset
must be held by the superset.

You can see this for the capabilities that we've been looking at in Listing
25.

78 printf("bounded ⊂ offset? %d\n",
79 cheri_subset_test(offset, bounded));
80 printf("restricted ⊂ bounded? %d\n",
81 cheri_subset_test(bounded, restricted));
82 printf("untagged ⊂ restricted? %d\n",
83 cheri_subset_test(restricted, untagged));
84 printf("offset ⊂ bounded? %d\n",
85 cheri_subset_test(bounded, offset));

Lཥၑၣཥ࿏༥ 25. Subset relationships over two capabilities.
[from: examples/compare_capabilities/example.c]

When you run this, the output is:
bounded ⊂ offset? 1
restricted ⊂ bounded? 1
untagged ⊂ restricted? 0
offset ⊂ bounded? 0

Most of these lines should not be a surprise. The bounded capability is a
subset of the original, it was created by subsetting the bounds. The capability
that was created by subsetting the rights on the bounded version is, in turn,

4. C/C++ extensions for CHERIoT

72

a subset of the bounded version. Finally, the original is not a subset of the
bounded version.

The surprising entry might be that the untagged capability is not a subset
of the original. In a set-theoretic sense, this would be incorrect: The empty
set is a subset of any other set. In practice, this degenerate case is not useful.

The test-subset operation gives a unidirectional substitution property (i.e.
any operation that is safe to do with the subset is safe to do with the super-
set) but this is not usually something that you care about. The test is most
useful for telling if one capability is derived from another (or, at least, could
have a derivation path from a specȋc common root). For example, we can
tell that (ignoring stack lifetime errors) bounded and restricted are both de-
rived from the original stack allocation. It happens that, in this specȋc case,
unboundedwas derived from the same stack allocation but the lack of a tag bit
means that there are no provenance guarantees. For untagged values, we can
make no claims about whether theywere derived from any other capabilities.

This is useful to check if a particular pointer that you've been given is
derived from something that you already own. The claims mechanisms (de-
scribed in Section 7.8) uses this, for example, to allow threads to keep an ob-
ject alive if you hold a pointer derived from the original object pointer. The
temporal-safety properties of CHERIoT ensure that any dangling pointer to a
heap object will be untagged and so any valid (tagged) pointer that is a subset
of a heap allocation must be derived from the return from the original call to
malloc or some similar function.

4.9. Sizing allocations
CHERI capabilities cannot represent arbitrary bases and bounds. The original
CHERI prototypes, with a 64-bit address, encoded a 64-bit top address and a
64-bit base. This made capabilities 256 bits in total (four times the address
size), which was not feasible for production implementations (though having
lots of space was very useful for prototyping). Fortunately, there is a lot of re-
dundancy between these three values. Generally, for any allocation, the high
bits of the base, top, and some in-bounds address will all be the same.

CHERI systems since around 2016 have used compressed bounds encod-
ings that take advantage of this redundancy. Rather than storing a complete
address for the top and bottom, they store a ̓oating-point value that is the
distance from the address to the top and from the address to the base. The
exponent bits are shared between the two. This means that, the larger the
bounds, the more strongly aligned the base and bounds must be.

4.9. Sizing allocations

73

The current CHERIoT encoding gives byte-granularity bounds
for objects up to 511 bytes, then requires one more bit of align-
ment for each bit needed to represent the size, up to 8MiB. Capa-
bilities larger than 8 MiB must be aligned on an 8 MiB boundary
for their base and top. This is ample for small embedded systems
where most compartments or heap objects are expected to be
under tens of KiBs.

This is a slightly simplȋed version of the original CHERI
scheme,which simplȋes critical-path lengths on short pipelines.
A microcontroller may have a simple pipeline with only the tra-
ditional fetch, decode, and execute phases (or even less). The
critical path is the path with the most logic chained together
in a single stage. This limits the maximum clock speed for the
device because a signal must be able to propagate through all of
this logic in a single cycle.

Future versions of CHERIoT are likely to support slightlymore
expressive formats on longer pipelines, where the decoding can
be split between two or more stages. Other CHERI systems make
di̛erent trade-ơs.

Calculating the length can be non-trivial and can vary across CHERI sys-
tems. The compiler provides two builtins that help.

The ̑rst, __builtin_cheri_round_representable_length, returns the
smallest length that is larger than (or equal to) the requested length and can
be accurately represented. The compressed bounds encoding requires both
the top and base to be aligned on the same amount and so there's a corre-
sponding mask that needs to be used for alignment. The __builtin_cher-
i_representable_alignment_mask builtin returns the mask that can be ap-
plied to the base and top addresses to align them.

Listing 26 shows how to use these builtins via their wrappers to ̑nd the
smallest representable size for a requested size.

The allocator is using these internally when it determines the size to pro-
vide for a request and the alignment that it needs to ̑nd. When you run it,
you may see something like this.
Smallest representable size of 160000-byte allocation: 160256
(0x27200). Alignment mask: 0xfffffe00
0x80006800 (valid:1 length: 0x27200 0x80006800-0x8002da00 otype:0
permissions: G RWcgm- -- -)

4. C/C++ extensions for CHERIoT

74

34 const size_t Size = 160000;
35 printf("Smallest representable size of %d-byte "
36 "allocation: %d (0x%x). Alignment mask: 0x%x\n",
37 Size,
38 cheri_round_representable_length(Size),
39 cheri_round_representable_length(Size),
40 cheri_representable_alignment_mask(Size));
41 void *allocation = malloc(Size);
42 print_capability(allocation);

Lཥၑၣཥ࿏༥ 26. Rounding up sizes for representable allocations.
[from: examples/bounds_lengths/example.c]

The requested size needs to be rounded up to 160,256 bytes. The hex repre-
sentationmakes it easier to see the alignment is 0x200, or 512 in decimal. The
top and bottom of an allocation that can accurately represent the requested
size must be 512-byte aligned. The alignment mask is simply another way of
representing this, it is nine zeroes in the low bits and ones in all of the high
bits.

When the allocator returns a value for this requested size, the length is
rounded up as you'd expect. If you bitwise AND the base and top with the
alignmentmask, youwill see no change. Both are, in this specȋc case, slightly
more strongly aligned than required, most likely because this is the ̑rst mal-
loc call in the program and so these are as strongly aligned as the heap base.
You can test that the alignment is adequate by doing a bitwise AND (C opera-
tor: &) of the base or topwith the alignmentmask. This should leave the value
unmodȋed.

4.10. Manipulating capabilities with CHERI::Capability

The raw C builtins can be somewhat verbose. CHERIoT RTOS provides a
CHERI::Capability class in cheri.hh to simplify inspecting and manipulat-
ing CHERI capabilities.

These providemethods that aremodelled to allowyou to pretend that they
give direct access to the ̑elds of the capability. The manipulate_capabil-
ities_cxx example shows how to do the same things as the manipulate_-
capabilities_c example, this time with the C++ APIs. First, Listing 27 reim-
plements the print_capability function using CHERI::Capability. This is
slightlymore verbose because it's printingwith the printf function, which is
a C variadic and so cannot take the result of ptr.address(), which is a proxy
that allows you to manipulate the address.

4.10. Manipulating capabilities with CHERI::Capability

75

6 void print_capability(CHERI::Capability<void> ptr)
7 {
8 using P = CHERI::Permission;
9 ptraddr_t address = ptr.address();
10 CHERI::PermissionSet permissions = ptr.permissions();
11 printf("0x%x (valid:%d length: 0x%x 0x%x-0x%x otype:%d "
12 "permissions: %c "
13 "%c%c%c%c%c%c %c%c %c%c%c)\n",
14 address,
15 ptr.is_valid(),
16 ptr.length(),
17 ptr.base(),
18 ptr.top(),
19 ptr.type(),
20 (permissions.contains(P::Global)) ? 'G' : '-',
21 (permissions.contains(P::Load)) ? 'R' : '-',
22 (permissions.contains(P::Store)) ? 'W' : '-',
23 (permissions.contains(P::LoadStoreCapability))
24 ? 'c'
25 : '-',
26 (permissions.contains(P::LoadGlobal)) ? 'g' : '-',
27 (permissions.contains(P::LoadMutable)) ? 'm' : '-',
28 (permissions.contains(P::StoreLocal)) ? 'l' : '-',
29 (permissions.contains(P::Seal)) ? 'S' : '-',
30 (permissions.contains(P::Unseal)) ? 'U' : '-',
31 (permissions.contains(P::Global)) ? '0' : '-');
32 }

Lཥၑၣཥ࿏༥ 27. Pretty-printing a capability using the C++ APIs.
[from: examples/manipulate_capabilities_cxx/example.cc]

The using P = CHERI::Permission is not good style. It is
done here so that the example code ̑ts in a narrow page. In nor-
mal code, a mode descriptive name would be better.

Note the CHERI::PermissionSet class here. This is a (constexpr) class that
encapsulates a CHERI permission set. The C version of this exposed the per-
missions in their raw formas awordwhere each bit represented a permission.
The C++ version uses a rich type, with methods for subsetting. This can be
used as a template parameter and can be used in static assertions for com-
pile-time validation of derivation chains. The loader makes extensive use of
this class to ensure correctness, with compile-time checks that operations on
permission-set objects are valid.

4. C/C++ extensions for CHERIoT

76

This part of the example uses the contains()method to query whether a
specȋc permission is present. This is strongly typed; it takes a CHERI::Per-
mission, not an arbitrary integer. It is also a variadic template function: you
can pass it multiple permissions and it will return true if and only if the per-
mission set has all of them.

Next, Listing 28 does the same set of manipulations as Listing 22. This uses
a CHERI::Capability<void> rather than a void* to hold the pointers.

38 // A stack allocation
39 char stackBuffer[23];
40 print_capability(stackBuffer);
41 // A heap allocation
42 CHERI::Capability<void> heapBuffer = new char[23];
43 print_capability(heapBuffer);
44 // Setting the bounds of a heap capability
45 auto bounded = heapBuffer;
46 bounded.bounds() = 23;
47 print_capability(bounded);
48 // Removing permissions from a heap capability
49 bounded.permissions() &= CHERI::Permission::Load;
50 print_capability(bounded);
51 print_capability(heapBuffer);

Lཥၑၣཥ࿏༥ 28. Manipulating capabilities using the C++ APIs.
[from: examples/manipulate_capabilities_cxx/example.cc]

The bounded.bounds() = 23 expression shows how the methods act like
̑elds. This is doing a set-bounds operation on the capability. Similarly, the &=
operation on the result of calling permissions() is an and-permissions oper-
ation. This lets you operate on the permissions as a CHERI::PermissionSet
directly.

The equality comparison for CHERI::Capability uses exact comparison,
unlike raw C/C++ pointer comparison. This is less confusing for new code (it
respects the substitution principle) but users may be confused that a == b
is true but Capability{a} == Capability{b} is false. Listing 29 shows the
various forms of comparison.

When you run this, you will see:
heapBuffer == bounded? 0
heapBuffer == bounded (as raw pointers)? 1
heapBuffer == bounded (as address comparison)? 1

The last two comparisons are equivalent, but the third is more explicit. If
you want to compare two pointers for equality as address comparison, com-
paring their addresses makes the intent clear.

4.10. Manipulating capabilities with CHERI::Capability

77

55 printf("heapBuffer == bounded? %d\n",
56 heapBuffer == bounded);
57 printf("heapBuffer == bounded (as raw pointers)? %d\n",
58 heapBuffer.get() == bounded.get());
59 printf(
60 "heapBuffer == bounded (as address comparison)? %d\n",
61 heapBuffer.address() == bounded.address());

Lཥၑၣཥ࿏༥ 29. Comparting capabilities using the C++ APIs.
[from: examples/manipulate_capabilities_cxx/example.cc]

See cheri.hh formore details and for other conveniencewrappers around
the compiler builtins.

4. C/C++ extensions for CHERIoT

78

Chapter 5.
Compartments and libraries
Inmost conventional operating systems, you share codewith shared libraries
and you isolate running code with processes. Compartments in CHERIoT are
somewhere between these two abstractions. Unlike a process, they do not
own threads, which are an independent concept in CHERIoT, described more
in Chapter 6.

Communication between compartments looks a lot more like commu-
nication between shared libraries than like inter-process communication
(IPC). They can export functions to be called from other compartments and
can call functions exported from other compartments. Like a shared library,
they have code and globals associated with them, but a cross-compartment call
crosses a security boundary, in the same way that an IPC message would.

CHERIoT shared libraries are a lightweight way of reusing code without
duplicating it into di̛erent compartments. They provide a very similar pro-
grammermodel to simply copying andpasting a function into every compart-
ment that uses it, without the space overhead. Calling a library function does
not involve crossing a security boundary. Libraries contain code and read-
only data but do not have mutable globals. It is possible for libraries to hold
secrets but, unless library functions arewritten in very careful assembly, they
should assume that any (immutable) globals in the library can leak to callers.
Each library entry point is exposed as a sentry capability (see Section 1.6) to
the callers, which means that the caller cannot directly read its code or (im-
mutable) data.

5.1. Compartments and libraries export functions
In a UNIX-like system, a shared library can export any kind of symbol. This
includes functions and global variables. In CHERIoT, compartments and li-
braries can export only functions as entry points. Global variables are always
private to a compartment or library, unless a pointer is explicitly passed out
as a function argument or return in a cross-compartment call. This design is
intended to make it easier to reason about sharing between compartments.

If you declare a global in a header and dȇne it in a library or a compart-
ment, you may see linker errors if you try to use it in other compartments or
libraries. This holds even for const globals exported from libraries. You can
place a static const global in a header for a library, but that will introduce

79

If a library traps, the error handler for the caller compart-
ment may see the register ̑le for the middle of the library. Sim-
ilarly, the compiler may spill arbitrary values onto the stack or
leave them in registers at the end of a library function. As such,
you should assume that anything processed in a library written
in a compiled language will leak to the caller and anything writ-
ten in assemblymust be very careful to avoid leaking secrets. This
is not normally a problem because most libraries just exist as an
alternative to compiling the same functions into multiple com-
partments. For example, the functions that implement locks on
top of futexes (see Section 6.5) are in a library to reduce over-
all code size, but simply copying the implementations of these
functions into each caller would have no security implications.

tight coupling: the value in the headermay be inlined at any use site. For very
large globals, this may also increase code size signȋcantly.

As mentioned previously, (read-only) globals in a library are
hidden in a software-engineering sense, but may be leaked to
callers and should not be considered private in a security sense.

You can still use a compartment's globals to share data but you must ex-
plicitly expose them via an accessor function. This makes CHERIoT compart-
ments and libraries similar to Smalltalk-style objects, with public methods
and private instance variables. You can also create globals that are shared
between compartments (see Section 5.7) but that are not part of any com-
partment.

If you expose an interface that returns a pointer to a global, you can
use CHERI permissions to restrict access. Returning a read-only pointer to
a global is a common idiom for building a lightweight broadcast communi-
cation channel. The owning compartment can write to the global and other
compartments can read from their copy of the pointer, with guarantees that
only the owning compartment is making changes.

To see the di̛erences, Listing 30 shows a header that exports two func-
tions, one from a compartment and one from a library.

The exported functions both contain the implementation shown in List-
ing 31, which uses the debug APIs (see Chapter 8) to print the capabilities in
three registers. This listing shows the version in the library but the code in

5. Compartments and libraries

80

7 /**
8 * A simple example library function.
9 */
10 __cheriot_libcall void library_function();
11
12 /**
13 * A simple example compartment function.
14 */
15 __cheriot_compartment(
16 "compartment") int compartment_function();

Lཥၑၣཥ࿏༥ 30. A header dȇning library and compartment exports.
[from: examples/library_or_compartment/interface.h]

the compartment is identical. There are two compartments in this example,
the entry compartment and the compartment that it calls.

The exported (library and compartment) functions will print the stack,
code, and globals regions, respectively. The compiler provides builtin func-
tions to copy two of these (the program counter and stack capabilities) but
the third, the globals pointer, requires some inline assembly. The inline as-
sembly needs to run at the start of the function because this function does
not reference any globals, so the compiler will otherwise spill this register to
use it as a temporary.

When you run this code, you should see output something like this:
Entry: Stack pointer: 0x80000d30 (v:1 0x80000750-0x80000d50 l:0x600
o:0x0 p: - RWcgml -- ---)
Entry: Program counter: 0x80005f18 (v:1 0x80005ee0-0x80005fe8
l:0x108 o:0x0 p: G R-cgm- X- ---)
Entry: Globals pointer: 0x80006202 (v:1 0x80006200-0x80006204 l:0x4
o:0x0 p: G RWcgm- -- ---)
Library: Stack pointer: 0x80000d20 (v:1 0x80000750-0x80000d50
l:0x600 o:0x0 p: - RWcgml -- ---)
Library: Program counter: 0x80005d48 (v:1 0x80005d20-0x80005df8
l:0xd8 o:0x0 p: G R-cgm- X- ---)
Library: Globals pointer: 0x80006202 (v:1 0x80006200-0x80006204
l:0x4 o:0x0 p: G RWcgm- -- ---)
Compartment: Stack pointer: 0x80000cf0 (v:1 0x80000750-0x80000d10
l:0x5c0 o:0x0 p: - RWcgml -- ---)
Compartment: Program counter: 0x80005e20 (v:1 0x80005df8-0x80005ee0
l:0xe8 o:0x0 p: G R-cgm- X- ---)
Compartment: Globals pointer: 0x800061fe (v:1 0x800061fc-0x80006200
l:0x4 o:0x0 p: G RWcgm- -- ---)

Ignore the exact memory addresses, these may change depending on
where you run the example. First, note that the program counter capability
(the capability used for instruction fetch) is di̛erent in all three cases and

5.1. Compartments and libraries export functions

81

12 register void *cgp asm("cgp");
13 asm("" : "=C"(cgp));
14 // Print the stack capability from within the library.
15 Debug::log("Stack pointer: {}",
16 __builtin_cheri_stack_get());
17 Debug::log("Program counter: {}",
18 __builtin_cheri_program_counter_get());
19 Debug::log("Globals pointer: {}", cgp);

Lཥၑၣཥ࿏༥ 31. A simple print function to introspect compartment state.
[from: examples/library_or_compartment/library.cc]

the bounds do not overlap. In this particular build, the called compartment
is placed in code memory immediately after the entry compartment, so the
address 0x80005df8 is the boundary between the two.

Next, observe that the globals pointer is di̛erent between the entry com-
partment and the one that is called in the last three lines of the output. This
example includes a single int global, to make sure that these are non-zero
(two compartments may have the same zero-length capabilities for globals if
they have no globals). In contrast, the library prints the same globals pointer
as the caller. As previously mentioned, a malicious library can access any
globals in the caller.

Finally, look at the stack pointers. Thȇrst thing to note is that the start ad-
dress is 0x80000750 in all cases. This is because the stack belongs to the thread
and not the compartment. Stacks grow downwards and the end of the stack is
the same for each. The address of the stack pointer is di̛erent in each because
they run at di̛erent depths on the stack. The initial value is very close to the
top of the stack, then the library and compartment calls are deeper. A com-
partment call needs to save more state (two callee-save registers and the old
global pointer, which are preserved across normal calls) and so entry to the
compartment call is slightly (48 bytes) lower. The top of the stack is the most
interesting place. In the compartment call, the top of the stack is at address
0x80000d10, 64 bytes below its location in the entry compartment and the li-
brary. Anything above that point is unreachable in the compartment before
then. The length shows this truncation another way. The original had 0x600
bytes of stack but this is reduced to 0x5c0 after the cross-compartment call.

This may all be easier to understand visually. Figure 4 shows the memory
ranges that each compartment points to, in each of the three places. The lines
marked with a 1 indicate the initial values on entry, those marked 2 indicate
the values in the library call and thosemarked 3 show the values in the cross-
compartment call.

5. Compartments and libraries

82

PCC

CGP

CSP

Entry
compartment’s

code

Entry
compartment’s

globals

Current
thread’s

stack

Registers
Example

compartment’s
code

Example library’s
code

Example
compartment’s

globals

⓵

⓶

⓷

⓵

⓵

⓶

⓶

⓷

⓷

⓵ Initial entry
⓶ Library call
⓷ Compartment call

Fཥ༥ၸျໞ 4. An illustration of memory pointed to by each register in the
compartment-call example.

5.2. Understanding the structure of a compartment
From a distance, a compartment is a very simple construct. The core of a
compartment is made of just two capabilities. The program counter capabil-
ity (PCC) dȇnes (and grants access to) the range of memory covering the
compartment's code and read-only globals. This has read and execute per-

5.2. Understanding the structure of a compartment

83

missions. The capability global pointer (CGP) dȇnes (and grants access to)
the range of memory covering the compartment's mutable globals. The full
structure is more complex and is shown in Figure 5.

PCC

CGP

Compartment’s code

Compartment’s
globals

Registers

Compartment’s
export table

Compartment’s
read-only
globals

Compartment’s
import table

Another
compartment’s

export table

Device
memory

Pre-shared
objects

Compartment’s code and read-only data

Fཥ༥ၸျໞ 5. The structure of a compartment.

A future version of the ABI may move read-only globals out
of the program counter capability region but this requires some
ISA changes to be e̕cient and so will likely not happen before
CHERIoT 2.0.

If a compartment didn't need to interact with anything else, these two re-
gions would be su̕cient. In practice, compartments are useful only because
they interact with other compartments or the outside world. The read-only
data region contains an import table. This is the only region of memory that,
at system start, is allowed to contain capabilities that grant access outside of
the PCC and CGP region for the compartment. The instructions for the loader
to populate these are in the ̑rmware image and are amenable to auditing.

5. Compartments and libraries

84

The import table contains three kinds of capabilities. MMIO capabilities
are conceptually simple: they are just pointers that grant access to specȋc
devices. This mechanism allows byte-granularity access to device registers
and so it's possible to provide a compartment with access to a single device
register from a large device.

Import tables also contain sentry capabilities for library functions. A
shared library has its own PCC region (like a compartment) but does not have
a CGP region. Library routines are invoked by loading the sentry from the
import table and jumping to it.

Finally, import tables contain sealed capabilities referring to other com-
partments' export tables. If a compartment exports any entry points for other
compartments to call, it has an export table. This contains the PCC and CGP
for the compartment and a small amount ofmetadata for each exported func-
tion describing:

• The location of the entry point.
• Whether interrupts are enabled or disabled when invoking this func-
tion.

• Howmany argument registers are used (conversely, howmany are un-
used and should be zeroed).

This is all of the information that the switcher needs to transition from one
compartment to another. Libraries have similar export-table entries, though
they are used by the loader rather than the switcher. The ̑nal element, the
number of registers to use, is not used for libraries because library calls are
not a transition between security domains.

Extracting code and moving it to a new compartment adds a very small
amount ofmemory overhead, on the order of a dozenwords for a typical com-
partment.

5.3. Adding compartments to the build system
The build system makes adding compartments trivial. An xmake build ̑le
(xmake.lua) uses a declarative Lua-like syntax at the top level. This dȇnes
targets as sections. Listing 32 shows the build system logic for the example
compartments and libraries from earlier. Dȇning a new target implicitly
ends the dȇnition of the previous one. This example implicitly ends the li-
brary and entry targets, but uses target_end() to explicitly end the compart-
ment target.

5.3. Adding compartments to the build system

85

15 -- An example compartment that we can call
16 compartment("compartment")
17 add_files("compartment.cc")
18 target_end()
19
20 -- An example compartment that we can call
21 library("library")
22 set_default(false)
23 add_files("library.cc")
24
25 -- Our entry-point compartment
26 compartment("entry")
27 add_files("entry.cc")
28 add_deps("compartment", "library")

Lཥၑၣཥ࿏༥ 32. Build system code for dȇning compartment and library targets
[from: examples/library_or_compartment/xmake.lua]

Inside each target dȇnition, you can add ̑les, dependencies on other tar-
gets, and so on. The "library" target, for example, sets itself as a non-default
target. xmake will build every default target, whether it is used or not. Mark-
ing a target as non-default allows it to be dȇned, but built only if it is used.
This is useful for reusable components. The RTOS provides build-system logic
for a set of libraries, but each is built only if it is added as a dependency of
something that is built.

The compartment, library, and firmware target markers are
syntactic sugar over the xmake target command. The ̑rst two
simply set the default rules to build as the correct kind of tar-
get. The firmware target dȇnition is more complex because it
also implicitly instantiates core parts of the RTOS, constructs the
linker script, and so on. If you are reading the xmake documen-
tation, simply treat these as if they were target dȇnitions.

If your xmake.lua ̑le contains compartment or library def-
initions but no ̑rmware, then it can be reused. Each of the op-
tional libraries and compartments shipped with the RTOS is de-
̑ned like this, in a separate xmake.lua that is then included. As
long as the components are set as non-default, they will simply
be available for ̑rmware to add as dependencies.

5. Compartments and libraries

86

https://xmake.io
https://xmake.io

Once you have dȇned the rules to build each compartment and library,
they need to be combined into a ̑rmware image. Any library or compartment
that is a direct or indirect dependency of a ̑rmware image will be built and
linked into the ̑nal image. For this example, we show both forms. The entry
compartment lists both the library and the example compartment as explicit
dependencies because it calls both of them. The ̑rmware dȇnition (Listing
33) adds the entry compartment as an explicit dependency, which then pulls
in the other two. This ̑rmware also depends on two libraries from the core
RTOS, the freestanding library, which provides the core of the C run-time en-
vironment, and the debug library which pretty-prints the debug messages.

32 -- Firmware image for the example.
33 firmware("library_or_compartment")
34 -- RTOS-provided libraries
35 add_deps("freestanding", "debug")
36 -- Our compartments
37 add_deps("entry")

Lཥၑၣཥ࿏༥ 33. Build system code for adding dependencies on compartment and
library targets [from: examples/library_or_compartment/xmake.lua]

5.4. Choosing a trust model
There are three trust models that are commonly applied to compartments:
Sandbox

A sandbox is a compartment that is used to isolate untrusted code. This
model is used to protect the rest of the system. Typically, a sandboxwill
trust values passed to it as arguments to exported functions or return
values from functions that it calls in other compartments.

Safebox
A safebox is a compartment that holds some secret or sensitive data
thatmust be protected from the outside. For example, a safeboxmaybe
used to protect a key and expose functions that use it to encrypt or sign
data on behalf of callers. A safebox does not trust any data provided
from outside of the compartment, but callers may trust it to behave
correctly.

Mutual distrust
Mutual distrust is the strongest model. A compartment in a mutual-
distrust relationship protects itself from attacks from the outside by
careful handling of inputs and expects other compartments to protect
themselves from it in the same way.

5.4. Choosing a trust model

87

This is the start of dȇning a threatmodel for your code. A compartmentmay
simply be used for fault isolation, to limit the damage that a bug can do. You
may assume that an attacker will be able to compromise some compartments
(for example, those directly processing network packets) and defend yourself
accordingly.

In the core of the RTOS, the scheduler is written as a safebox. It does not
trust anything on the outside and assumes that everything else is trying to
make it crash. The memory allocator is also written as a safebox, assuming
that everything else is trying to eithermake it crash or leak powerful capabil-
ities. For some operations, the scheduler invokes the allocator. The scheduler
trusts the allocator to enforce heap memory safety. It does not, for example,
try to check that the memory allocator is returning disjoint capabilities (it
can't see every other caller of heap_allocate, so it couldn't validate this).
It is, however, written to assume that other compartments may try to mali-
ciously call allocator APIs to cause it to crash, for example by freeingmemory
that the scheduler is using. When thinking about trust, it's worth trying to
articulate the properties that other code is trusted to enforce or preserve. For
example, everything in the CHERIoT system trusts the scheduler for availabil-
ity. Most things trust the allocator to enforce spatial and temporal memory
safety for the heap.

5.5. Implementing a safebox
The safebox abstraction is trivial to implement in CHERIoT. Listing 34 shows
the build system for a safebox. Note that there's nothing in this that indicates
the trust model. From the perspective of the build, all compartments are just
compartments. Trust relationships between them are a property of how you
write the code in the compartments.

Listing 35 shows a complete implementation of a simple safebox for a
guess-the-number game. This generates a (very weak!) pseudorandom num-
ber using the cycle counter and allows callers to guess it.

This is called from the runner compartment, shown in Listing 36. This
compartment talks directly to the outside world and so is part of the attack
surface. It's quite unlikely that a compartment that simply reads individual
bytes and ignores anything not in the ASCII digit range could be vulnerable,
but the same techniques can protect much more realistic examples.

When you run this, you will see output something like the following:

5. Compartments and libraries

88

Runner: Guess a number between 0 and 9 (inclusive)
Safebox: Guess was 3, secret was 4
Safebox: Guess was 1, secret was 8
Safebox: Guess was 9, secret was 4
Safebox: Guess was 4, secret was 3
Safebox: Guess was 8, secret was 6
Safebox: Guess was 1, secret was 0
Safebox: Guess was 2, secret was 8
Safebox: Guess was 3, secret was 5
Safebox: Guess was 5, secret was 2
Safebox: Guess was 2, secret was 3
Safebox: Guess was 1, secret was 6
Runner: Correct! You guessed the secret was 3

16 -- The safebox compartment
17 compartment("safebox")
18 add_files("safebox.cc")
19
20 compartment("runner")
21 add_files("runner.cc")
22
23 -- Firmware image for the example.
24 firmware("safebox_example")
25 -- RTOS-provided libraries
26 add_deps("freestanding", "cxxrt", "debug")
27 -- Our compartments
28 add_deps("runner", "safebox")
29 on_load(function(target)
30 -- The board to target
31 target:values_set("board", "$(board)")
32 target:values_set("threads", {
33 {
34 compartment = "runner",
35 priority = 1,
36 entry_point = "entry",
37 stack_size = 0x400,
38 trusted_stack_frames = 2
39 },
40 }, {expand = false})
41 end)

Lཥၑၣཥ࿏༥ 34. Build system code for the safebox example.
[from: examples/safebox/xmake.lua]

In this example, the extra compartmentalisation doesn't really buy us any-
thing. You could combine these two compartments and have similar func-
tionality. Perhaps more importantly, separating them adds little additional
complexity to the code, yet respects the principle of least privilege. The code

5.5. Implementing a safebox

89

6 using Debug = ConditionalDebug<true, "Runner">;
7
8 __cheriot_compartment("runner") void entry()
9 {
10 Debug::log("Guess a number between 0 and 9 (inclusive)");
11 while (int c =
12 MMIO_CAPABILITY(Uart, uart)->blocking_read())
13 {
14 if ((c < '0') || (c > '9'))
15 {
16 Debug::log("Invalid guess: {}", c);
17 continue;
18 }
19 c -= '0';
20 if (check_guess(c))
21 {
22 Debug::log("Correct! You guessed the secret was {}",
23 c);
24 }
25 }
26 }

Lཥၑၣཥ࿏༥ 36. The runner compartment for the guess-the-numbers game
[from: examples/safebox/runner.cc]

6 using Debug = ConditionalDebug<true, "Safebox">;
7
8 bool check_guess(int guess)
9 {
10 static int secret = rdcycle64() % 10;
11 if (guess != secret)
12 {
13 Debug::log(
14 "Guess was {}, secret was {}", guess, secret);
15 secret = rdcycle64() % 10;
16 return false;
17 }
18 return true;
19 }

Lཥၑၣཥ࿏༥ 35. A safebox for a guess-the-numbers game
[from: examples/safebox/safebox.cc]

that handles I/O does not need to know the secret and the code that knows
the secret does not need to be able to read via the UART.

A safebox assumes that its caller is malicious. A compartment may start
malicious or become malicious as the result of a compromise. Try modify-
ing only runner.cc in this example to leak the secret without any incorrect

5. Compartments and libraries

90

guesses. Hopefully, you will ̑nd it impossible.

5.6. Building software capabilities with sealing
The CHERI capability mechanism can be used to express arbitrary software-
dȇned capabilities. Recall that a capability, in the abstract, is an unforge-
able token of authority that can be presented to allow some action. In UNIX
systems, for example, ̑le descriptors are capabilities. A userspace process
cannot directly talk to the disk or the network, but if it presents a valid ̑le
descriptor to system calls such as read and write then the kernel will per-
form those operations on its behalf.

CHERIoT provides a mechanism to create arbitrary software-dȇned ca-
pabilities using the sealing mechanism (see Section 1.6). CHERIoT provides
almost a few billion sealing types for use with software-dȇned capabilities.
You can allocate one of these dynamically by calling token_key_new.

⚠

There is no mechanism to reuse sealing capabilities. As such,
once you have allocated 4,278,190,079, you will be unable to cre-
ate new ones. A 20 MHz core doing nothing other than allocat-
ing new sealing capabilities could exhaust this space in around a
day. If untrusted code is allowed to allocate dynamic sealing ca-
pabilities then you may wish to restrict its access to this API and
instead give it access to a wrapper that limits the number that it
may allocate.

You can also statically register a sealing type with the STATIC_SEALING_-
TYPE() macro. This takes a single argument, the name that you wish to give
the type. This name is used to refer to the static sealing capability and is the
name that will show up in auditing reports.

Documentation for the STATIC_SEALING_TYPEmacro
STATIC_SEALING_TYPE(name)

Macro that evaluates to a static sealing type that is local to this com-
partment.

5.6. Building software capabilities with sealing

91

Documentation for the token_key_new function
SKey token_key_new()

Create a new sealing key.
This function is guaranteed to complete unless the allocator has ex-
hausted the total number of sealing keys possible (2^32 - 2^24). After
this point, it will never succeed. A compartment that is granted ac-
cess to this entry point is trusted not to exhaust this resource. If you
wish to allow a compartment to seal objects, but do not wish to allow
it to allocate new sealing keys, then you should insert a proxy com-
partment that guarantees that it will call this API once and return a
single key to the caller.
The return value from this is a capability with the permit-seal and
permit-unseal permissions. Callers may remove one or both of these
permissions and delegate the resulting capability to allow other com-
partments to either seal or unseal the capabilities with this key.
If the sealing keys have been exhausted then this will return null. This
API is guaranteed never to block.

You can access the sealing capability within the compartment that ex-
ported it using the STATIC_SEALING_VALUE()macro. You can also refer to it in
other compartments, but only when constructing static sealed objects. A static
sealed object is like a global dȇned in a compartment, but that compartment
can access it only via a sealed capability.

Static sealed objects are declared with DECLARE_STATIC_SEALED_VALUE
and dȇned with DEFINE_STATIC_SEALED_VALUE. These macros take as argu-
ments both the name of the sealing type and the compartment that exposes
it. This ensures that there is no ambiguity and that accidental name collisions
don't lead to security vulnerabilities.

This gives a building block that can be used to dȇne arbitrary software-
dȇned capabilities at system start. A compartment that performs some ac-
tion exposes a sealing type and a structure layout that it expects. Static in-
stances of this structure can be baked into the ̑rmware image and then
passed as sealed capabilities into the compartment that wishes to use them

5. Compartments and libraries

92

Documentation for the DEFINE_STATIC_SEALED_VALUEmacro

DEFINE_STATIC_SEALED_VALUE(type,compartment,keyName,name,initialiser,...)

Dȇne a static sealed object. This creates an object of type type, ini-
tialised with initialiser, that can be referenced with the STAT-
IC_SEALED_VALUEmacro using name. The pointer returned by the lat-
ter macro will be sealed with the sealing key exported from compart-
ment as keyName with the STATIC_SEALING_TYPEmacro.
The object created with this macro can be accessed only by code that
has access to the sealing key.

Documentation for the DECLARE_STATIC_SEALED_VALUEmacro
DECLARE_STATIC_SEALED_VALUE(type,compartment,keyName,name)

Forward-declare a static sealed object. This declares an object of type
type that can be referenced with the STATIC_SEALED_VALUE macro
using name. The pointer returned by the latter macro will be sealed
with the sealing key exported from compartment as keyNamewith the
STATIC_SEALING_TYPEmacro.
The object created with this macro can be accessed only by code that
has access to the sealing key.

as capabilities. They can be unsealed using the token APIs described in Sec-
tion 7.7. Often, you'll use this via a type-specȋc wrapper, as in Listing 37.
Themacro (DECLARE_AND_DEFINE_COUNTER) lets users of this API dȇne a new
counter with the sealing type that the compartment exposes.

The increment function from this header is dȇned in Listing 38. This uses
token_unseal to unseal the sealed argument. Thiswill return a valid unsealed
object, or null if the unseal fails. Note that this uses the static sealed value
via the STATIC_SEALING_TYPEmacro. The sealing type doesn't need to be de-
clared, simply using it here ensures that it is exported from the compartment.
Trying to use a sealing type that isn't exported from a function will result in
a linker error.

5.6. Building software capabilities with sealing

93

8 using MonotonicCounterState = std::atomic<int64_t>;
9
10 #define DECLARE_AND_DEFINE_COUNTER(name) \
11 DECLARE_AND_DEFINE_STATIC_SEALED_VALUE(\
12 MonotonicCounterState, monotonic, CounterKey, name, 0)
13
14 typedef MonotonicCounterState
15 *__sealed_capability MonotonicCounter;
16
17 /**
18 * Increments a monotonic counter and returns the new value.
19 *
20 * Returns a negative value for errors.
21 */
22 int64_t __cheriot_compartment("monotonic")
23 monotonic_counter_increment(
24 MonotonicCounter allocatorCapability);

Lཥၑၣཥ࿏༥ 37. A header dȇning an interface using sealed objects.
[from: examples/software_capability/monotonic_counter.hh]

9 int64_t
10 monotonic_counter_increment(MonotonicCounter sealedCounter)
11 {
12 if (auto *counter = token_unseal(
13 STATIC_SEALING_TYPE(CounterKey), sealedCounter))
14 {
15 return ++(*counter);
16 }
17 return -EINVAL;
18 }

Lཥၑၣཥ࿏༥ 38. The increment function for a monotonic counter.
[from: examples/software_capability/monotonic.cc]

This function follows the convention of returning -EINVAL if passed an
invalid value. If the unseal succeeds, this function knows that it can trust the
contents of the object. You can see this being called in Listing 39.

The caller starts by declaring a monotonic counter and then tries calling
the increment function twice with a valid (sealed) value. It then tries again
with two kinds of invalid values. The ̑rst is a value of the correct underlying
type, but which is not sealed. The lack of sealing means that the callee can't
trust that the rules for this type are followed. In this example, the type of a
monotonic counter guarantees that the counter increments monotonically
but an unsealed value would allow the caller to set it to arbitrary values. This
should fail to unseal because it is not a sealed value.

5. Compartments and libraries

94

9 // Declare and define a counter for this to use.
10 DECLARE_AND_DEFINE_COUNTER(aCounter)
11
12 void __cheriot_compartment("caller") entry()
13 {
14 // Get a pointer to the valid counter.
15 auto validCounter = STATIC_SEALED_VALUE(aCounter);
16 // Create an unsealed value of the correct type
17 MonotonicCounterState invalidCounterState;
18 auto invalidCounter = reinterpret_cast<MonotonicCounter>(
19 &invalidCounterState);
20 auto invalidSealedCounter =
21 reinterpret_cast<MonotonicCounter>(MALLOC_CAPABILITY);
22
23 // Try the valid capability
24 printf("Valid counter increment returned %lld\n",
25 monotonic_counter_increment(validCounter));
26 printf("Valid counter increment returned %lld\n",
27 monotonic_counter_increment(validCounter));
28 // Try the invalid ones
29 printf("Invalid counter increment returned %lld\n",
30 monotonic_counter_increment(invalidCounter));
31 printf("Invalid counter increment returned %lld\n",
32 monotonic_counter_increment(invalidSealedCounter));
33 // Try manipulating the counter directly
34 auto underlyingCounter =
35 reinterpret_cast<MonotonicCounterState *>(validCounter);
36 (*underlyingCounter)++;
37 }

Lཥၑၣཥ࿏༥ 39. Calling the atomic increment function for a monotonic counter.
[from: examples/software_capability/caller.cc]

The second invalid value is a sealed value, but it is not sealed with the cor-
rect type. This is the default capability used for memory allocations in this
compartment. In this case, sealing should fail because the type is incorrect.
This shows how sealing enforces type safety even in the presence of untrusted
code.

Finally, this casts away the sealed type qualȋer and tries to access the
underlying type directly. The compiler will permit this (it's a reinterpret_-
cast, which tells the compiler that you're doing something that might be un-
safe but that it should trust you) but then the hardware will prevent you from
using the result.

When you run this, you should see the following output:

5.6. Building software capabilities with sealing

95

Valid counter increment returned 1
Valid counter increment returned 2
Invalid counter increment returned -22
Invalid counter increment returned -22
Error handler: SealViolation(0x3) error at 0x80003dd8 (v:0
0x80003d88-0x80003e48 l:0xc0 o:0x0 p: G R-cgm- X- ---) (return
address: 0x80006358 (v:1 0x80006110-0x80006da0 l:0xc90 o:0x5 p: G
R-cgm- X- ---)), with capability register CA0(0xa): 0x800079f0 (v:1
0x800079f0-0x80007a00 l:0x10 o:0xc p: G RWcgm- -- ---)

The ̑rst two calls worked and incremented the monotonic counter. The
last two calls, with invalid objects, were detected in the caller and the errors
were handled gracefully. Finally, the attempt to directly access the sealed ob-
ject trapped and invoked the compartment's error handler (see Section 5.11),
which printed a helpful message for debugging the failure.

The monotonic counter is valid as long as the counter starts at zero (over-
̓owing a 64-bit signed counter will take an infeasible amount of time). What
would happen if amalicious caller initialised a counterwith a non-zero value?
The full contents of any object created in this way shows up in the audit log.
You can audit these in a ̑rmware image to ensure that they are valid (see
Chapter 10). Once you've read Chapter 10, try writing a policy for this exam-
ple that ensures that all counters start at zero.

Most of the token APIs are implemented as cross-compartment calls into
the allocator, but token_obj_unseal (called here via the token_unsealwrap-
per) is a fast path implemented as a library. Thismakes it fast to unseal objects
(no cross-compartment call). It also removes any dependency on the alloca-
tor from things that rely on static sealing.

The RTOS' allocator provides a more detailed example of a real-world use
for this feature. When you allocate memory, you pass the allocator a static
sealed object that represents your allocation capability, which authorises al-
locating memory up to a quota. These contain a quota that is decreased on
allocation and increased on deallocation. A compartment can allocate mem-
ory only if it has an allocation capability and any allocation capability that it
holds shows up in the audit report when linking a ̑rmware image.

5.7. Sharing globals between compartments
CHERIoT supports a notion of pre-shared objects. Each pre-shared object is
allocated in a dedicated region of memory and can be imported into one or
more compartments. Each import can have a di̛erent set of permissions.

5. Compartments and libraries

96

This model lets you dȇne a global that is, for example, writeable by one
compartment but readable frommany,withno control ̓owbetween the com-
municating compartments.

Currently, the syntax for importing a pre-shared object is more verbose.
A future version of the CHERIoT compiler will incorporate this into the type
system and control imports via attributes on extern declarations.

You can import a pre-shared object with the SHARED_OBJECT(type, name)
macro. This takes the type of the object and its name (which must be globally
unique across the ̑rmware image) as arguments. This evaluates to a pointer
to the object. Objects imported with this macro have the full set of permis-
sions for imported objects.

You can also disable individual permissions using the SHARED_OBJEC-
T_WITH_PERMISSIONS macros. This takes an additional four boolean argu-
ments that dȇne the following set of permissions:

• Load
• Store
• Load or store capabilities
• Load mutable

Note that load-mutable depends on both load and load/store capability per-
missions. You cannot load a capability that has store permission if you cannot
load a capability.

Shared objects are dȇned in the build system, by setting the shared_ob-
jects value on a target (typically a compartment). For example:

on_load(function(target)
target:values_set("shared_objects", { exampleK = 1024,

test_word = 4 }, {expand = false})
end)

You don't need to dȇne this on every compartment that imports the ob-
ject, a single dȇnition is all that is necessary. This example is from the test
suite and dȇnes a test_word object that is a single 32-bit value and an exam-
pleK object that is 1024 bytes. Note that the objects are dȇned as sizes, not
as types. The type cannot be enforced by CHERI and depends on the compart-
ment that imports the object. If a single compartment has write access to an
object then that compartment forms the TCB for type safety of that object.

5.8. Rȇning trust
It seems conceptually easy to say 'this code is trusted' and 'this code is un-
trusted', but that rarely tells the whole story. At a high level, components are
typically trusted (or not) with respect to three properties:

5.8. Rȇning trust

97

Con̑dentiality
How does information ̓ow out of this component?

Integrity
How can information be modȋed by this component?

Availability
What can this component prevent from working?

Compartments and threads are both units of isolation in a
CHERIoT system. Threads are scheduled independently and pro-
vide a building block for availability guarantees. Only a higher-
priority thread or code running with interrupts disabled can
prevent an unrelated thread from making progress.

The relative importance of each of these varies a lot depending on context.
For example, you often don't care at all about con̑dentiality for encrypted
data, but you would not want the plain text form to leak and you dȇnitely
wouldn't want the encryption key to leak. If you're building a safety-critical
system, availability is often key. Dumping twenty tonnes ofmolten aluminium
onto the factory ̓oor will probably kill people and cost millions of dollars,
so preventing that is far more important than ensuring that no one unautho-
rised can inspect the state of your control network.

This kind of model helps understand where you should put compartment
boundaries. If an attacker can compromise one component, what damage can
they do to these properties in other compartments and in the system as a
whole?

For example, consider the simplest embedded application, which just
̓ashes an LED in a pattern. Where should you put compartment boundaries
here? Youmight put the piece that prepares the pattern in one compartment
and the part that interacts directly with the LED in another. Doing this does
not add security value. Neither compartment is exposed to an attacker and
so you're just protecting against bugs. The compartment with direct access
to the device is just passing a value from a function argument to the device.
It is unlikely that there will be a bug in this code that can a̛ect the rest of
the system. Conversely, the code that can call this can do everything that
this compartment can do, so you haven't reduced the damage that a bug can
cause.

Now imagine a slightly more complex device where, rather than lighting
a single LED, you are driving an LED strip that takes a 24-bit colour value for
each LED in the strip, encoded as a waveform down a two-wire serial line.

5. Compartments and libraries

98

If you generate the wrong waveform, you'll get the wrong pattern and so
there is an availability property that you can protect bymoving the code that
pauses and toggles a GPIO pin into a separate driver compartment. This driver
routine needs to run with interrupts disabled (context switching in the mid-
dle of programming the stripwould cause it to reprogram thȇrst part twice).
Running with interrupts disabled has availability implications on the rest of
the system because nothing else can run while this is happening. If you put
the driver in a separate compartment then you are protected in both direc-
tions:

• The driver is the only thing that can touch the relevant GPIO pin, so
if the code in that driver is correct, nothing can cause the strip to be
incorrectly programmed.

• The driver runs with interrupts disabled but the rest of the applica-
tion runs with interrupts enabled, so you can audit the driver code to
ensure that it doesn't cause problems for anything else that themicro-
controller is doing.

This then gives you something to build on if you decide, for example, that
you want to be able to update the lighting patterns from the Internet. Now
you want to add a network stack to be able to fetch the new patterns and an
interpreter to run them. What does the threat model look like?

The network stack is exposed to the Internet and so is themost likely place
for an attack to start. If this needs to interact with the network hardwarewith
interrupts disabled then you probably want to put that part in a separate net-
work driver compartment so that an attacker can't cause the network stack
to sit with interrupts disabled forever. A lot of common attacks on network
stacks will simply fail on a CHERIoT system because they depend on violating
memory safety, but it's possible that an attacker will ̑nd novel techniques
and compromise the network stack.

You will want narrow interfaces between the network stack and the TLS
stack, so that the worst that an attacker with full control over the network
stack compartment can do is provide invalid packets (and an attacker can do
that from the Internet anyway). The TLS stackwill decode completemessages
and forward them to the interpreter compartment. TLS packets have cryp-
tographic integrity protection so anything that comes through this path is
probably safe (unless the TLS compartment is compromised) but putting the
interpreter in a separate compartment ensures that invalid interpreter code
can provide di̛erent colours to the LEDs but can't damage the LEDs and can't
launch attacks over the network.

5.8. Rȇning trust

99

5.9. Validating arguments
If a function that is exported from a compartment takes primitive values as
arguments, there's little that an attacker can do other than provide invalid
values. For things like integers, this doesn't matter; for enumerations it's im-
portant to ensure that they are valid values.

Pointers aremore complicated. There are a few things that an attacker can
do with pointer arguments to invoke a crash:

• Provide a pointer without write permission for an output operand.
• Provide a pointer without read permission for an input operand.
• Provide a pointerwithout global permission thatmust be captured and
held across calls.

• Provide a pointer with a length that is too small.
• Provide something that isn't a valid pointer at all.
• Provide a pointer that overlaps your stack as an output argument.

Any of these (or similar attacks) will allow an attacker to cause your compart-
ment to encounter a fault when it tries to use the pointer.

In general, you will want to check permissions and bounds on any pointer
argument that you're passed. The CHERI::check_pointer function helps
here. It checks that a pointer has (at least) the bounds and permissions that
you expect and that it isn't in your current stack region. If you don't specify
a size, the default is the size of the argument type. You can use this to quickly
check any pointer that's passed to you.

Checking the pointer is not the only option. A CHERI fault will
invoke the compartment's error handler (see Section 5.11) and
so it may be possible to recover. Some compartments choose to
assume that their arguments are valid and just gracefully clean
up if they aren't.

If a pointer refers to a heap location, there is one additional attack pos-
sible. In general, a pointer cannot be modȋed after it's been checked, but
the memory that a pointer refers to may be freed. When this happens, the
pointer is implicitly invalidated. In some cases, you may simply wish to dis-
allow pointers that point to the heap.

You can check whether a pointer refers to heap memory by calling
heap_address_is_valid. If this returns true, you can prevent deallocation
by using the claimmechanism, described in Section 7.8.

5. Compartments and libraries

100

Documentation for the check_pointer function
template<PermissionSet Permissions =
PermissionSet{Permission::Load},

bool CheckStack = true,
bool EnforceStrictPermissions = false>

__always_inline inline bool
check_pointer(auto &ptr,

size_t space =
sizeof(std::remove_pointer<decltype(ptr)>))

requires(std::is_pointer_v<std::remove_cvref_t<decltype(ptr)>>
||

IsSmartPointerLike<std::remove_cvref_t<decltype(ptr)>>)

Checks that ptr is valid, unsealed, has at least Permissions, and has
at least space bytes after the current ơset.
ptr can be a pointer, or a smart pointer, i.e., any class that supports a
getmethod returning a pointer, and operator=. This includes Capa-
bility and standard library smart pointers.
If the permissions do not include Global, then this will also check that
the capability does not point to the current thread's stack. This be-
haviour can be disabled (for example, for use in a shared library) by
passing false for CheckStack.
If EnforceStrictPermissions is set to true, this will also set the per-
missions of the passed capability reference to Permissions, and its
bounds to space. This is useful for detecting cases where compart-
ments ask for fewer permissions than they actually require and callers
happen to provide the required permissions. Similarly, if you are call-
ing check_pointer in a function that wraps untrusted code such as
a third-party library, this lets you detect cases where your callers
are failing to remove permissions that the untrusted code should not
have.
This function is provided as awrapper for the ::check_pointerCAPI.
It is always inlined. For each call site, it materialises the constants
needed before performing an indirect call to ::check_pointer.

Alternatively, you can use the ephemeral claim mechanism (also docu-
mented in Section 7.8) to ensure that a pointer is either a pointer that cannot

5.9. Validating arguments

101

Documentation for the heap_address_is_valid function
_Bool heap_address_is_valid(const void * object)

Returns true if object points to a valid heap address, false otherwise.
Note that this does not check that this is a valid pointer. This should be
used in conjunction with check_pointer to check validity. The prin-
ciple use of this function is checking whether an object needs to be
claimed. If this returns false but the pointer has global permission, it
must be a global and so does not need to be claimed. If the pointer
lacks global permission then it cannot be claimed, but if this function
returns false then it is guaranteed not to go away for the duration of
the call.

be freed, or to ensure that it remains live until the next cross-compartment
call. These techniques are all combined in Listing 40, which is a simple func-
tion that prints a string to the UART, defensively.

This ̑rst uses a lock (see Chapter 6) to ensure that only one thread will ac-
cess this function at a time. If this compartment exposedmore than one func-
tion that used the UART then the lock would need to be shared between all of
them. Next, it uses heap_claim_ephemeral to prevent concurrent dealloca-
tion. After this, it is safe to use check_pointer to ensure that the permissions
are correct and that this pointer does not overlap the current compartment's
stack (because of the default value of CheckStack). For a C string, this checks
only that a single byte is readable. The function then gets the length explic-
itly and prints either the full length of the bưer, or the bưer up to a null
terminator, whichever is shorter.

You can see how well this works with the attacks shown in Listing 41. This
tries passing a string that is not null-terminated, a string without load per-
mission, an untagged capability, and ̑nally a valid capability.

When you run this example, you should see output like this:
No null
Non-malicious string

The string that misses the null terminator is written, but then there's no
over̓ow. The string that has the wrong permissions and the string that is
not a valid capability at all are simply not printed. Finally, the non-malicious
string is printed correctly, showing that the attacker has not been able to cor-
rupt internal state.

5. Compartments and libraries

102

13 char unterminatedString[] = {
14 'N', 'o', ' ', 'n', 'u', 'l', 'l'};
15 uart_puts(unterminatedString);
16 Capability invalidPermissions = "Invalid permissions";
17 invalidPermissions.permissions() &= Permission::Store;
18 uart_puts(invalidPermissions);
19 char *invalidPointer = reinterpret_cast<char *>(12345);
20 uart_puts(invalidPointer);
21 uart_puts("Non-malicious string");

Lཥၑၣཥ࿏༥ 41. Attempting to attack the safe UART.
[from: examples/check_arguments/hello.cc]

5.10. Ensuring adequate stack space
The stack is shared between compartments invoked on the same thread. The
callee has access to the portion of the stack that its callers have not used. This
is most important when a compartment is called by an untrusted caller. In
this case, a malicious caller may try to consume almost all of the stack before
calling a victim compartment. The victim would then trap in a place under
the attacker's control.

Before entering a compartment, the switcher will check the amount of
stack space against the required amount in the export table. By default, the
compiler will ̑ll this value with the amount that is required by the function
that serves as an entry point. This is su̕cient for leaf functions, but if your
function calls others (and they are not inlined) then this will be insu̕cient.

You can specify the stack space required by an exported function by us-
ing the __cheriot_minimum_stack attribute. This is a function attribute that
takes a single argument, the number of bytes of stack space that the func-
tion requires. Setting this attribute ensures that the switcher will not invoke
the exported function unless at least the required amount of stack space is
available. The malicious caller from the previous example would see a return
value if -ENOTENOUGHSTACK and your code would not be invoked. Using this
attribute requires you to know how much stack space the function will use.

CHERIoT CPUs include a feature called a stack high-watermark that tracks
the amount of stack that is used so that the switcher can avoid zeroing un-
used portions of the stack. The switcher provides a function, stack_low-
est_used_address, that you can call to ̑nd the lowest address. You can
then use the di̛erence between the top of the stack capability (accessed via
the __builtin_cheri_stack_get built-in function) to determine how much
stack space has been used in a particular invocation of a compartment entry
point.

5.10. Ensuring adequate stack space

103

14 /// Write a message to the UART.
15 int uart_puts(const char *msg)
16 {
17 static FlagLockPriorityInherited lock;
18 // Prevent concurrent invocation
19 LockGuard g(lock);
20 Timeout t{UnlimitedTimeout};
21 // Make sure that this is not going to be deallocated out
22 // from under us.
23 if (heap_claim_ephemeral(&t, msg) != 0)
24 {
25 return -EINVAL;
26 }
27 // Check that this is a valid pointer with the correct
28 // permissions.
29 if (!check_pointer<PermissionSet{Permission::Load}>(msg))
30 {
31 return -EINVAL;
32 }
33 // Get the bounds (distance from address to top) of the
34 // pointer.
35 Capability buffer{msg};
36 size_t length = buffer.bounds();
37 // Write the data, one byte at a time.
38 for (size_t i = 0; i < length; i++)
39 {
40 char c = msg[i];
41 if (c == '\0')
42 {
43 break;
44 }
45 MMIO_CAPABILITY(Uart, uart)->blocking_write(c);
46 }
47 MMIO_CAPABILITY(Uart, uart)->blocking_write('\n');
48 return 0;
49 }

Lཥၑၣཥ࿏༥ 40. Checks to ensure that a function does not crash.
[from: examples/check_arguments/uart.cc]

Documentation for the stack_lowest_used_address function
ptraddr_t stack_lowest_used_address()

Returns the lowest address that has been stored to on the stack in this
compartment invocation.

5. Compartments and libraries

104

This helper checks the amount of stack usage of the current
compartment. The switcher check is not intended to ensure that
the invocation of the current compartment can succeed, only
that failures are detectable and recoverable. If you want to en-
sure that a called compartment also has enough stack then you
will need to add its stack requirements to those of your compart-
ment.

The debug.hh header includes a C++ helper class, StackUsageCheck. This
takes a template argument allowing it to be disabled, enabled and just log if
you use more than the expected amount of stack, or enabled and trap if you
use more than the expected amount of stack. This is most commonly used
with a macro like this:
#define STACK_CHECK(expected)

StackUsageCheck<StackMode, expected, __PRETTY_FUNCTION__>
stackCheck

The StackMode template argument is one of StackCheckMode::Assert-
ing, StackCheckMode::Logging, or StackCheckMode::Disabled. Typically,
you will use it in logging mode initially, then disabled mode in production.
Use it in assertingmodewhen running representative tests in CI so that it fails
if you have increased your stack requirements and not updated the caller.

It's important that the tests that you run in assertingmode have good cov-
erage. It's typically ̑ne for this to be function-granularity coverage: with the
exception of variable-length arrays, functions stack usage does not depend
on control ̓ow within the function.

⚠
It's tempting to enable the stack checks in debug builds. This

is usually a bad idea because debug builds include extra checks
that increase stack usage. Enabling the stack checks in debug
builds will cause you to demand more stack space than a release
build actually needs, increasing overall memory pressure.

5.11. Handling errors
Asynchronous interrupts are all routed to the scheduler to wake up the rele-
vant threads and schedule the correct thread. Synchronous faults are (option-
ally) delivered to the compartment that caused them. These include CHERI
exceptions, invalid instruction traps, and so on: anything that can be directly
attributed to the current instruction.

5.11. Handling errors

105

Compartments have two opportunities to handle these, by implementing
at least one of two kinds of error handlers.
Rich

Rich error handlers that have access to the full state at the point the
error occurred. These can be written in C/C++ and can do things like
step over faulting instructions and resume, or provide rich diagnostic
information about the interrupted context.

Stackless
Lightweight error handlers that must be written in assembly.

When a hardware exception occurs, the switcher will ̑rst look for a rich error
handler and prepare a call frame for it. If there is not su̕cient stack space to
invoke a rich error handler, or if one is not provided by the current compart-
ment, the switcher will then look for a stackless error handler.

The stackless variant will be passed the stack capability as it was on entry
to the compartment and the exception cause, but no other information. Most
users will not write these but will instead use one that the platform provides.

5.12. Writing rich error handlers
You can provide a rich error handler by implementing compartment_er-
ror_handler in your compartment.

Documentation for the compartment_error_handler function
enum ErrorRecoveryBehaviour compartment_error_handler(struct
ErrorState * frame, size_t mcause, size_t mtval)

The error handler for the current compartment. A compartmentmay
choose to implement this. If not implemented then compartment
faults will unwind the trusted stack.

This function is passed a copy of the register ̑le and the exception cause
registers when a fault occurs. The mcause value will be one of the standard
RISC-V exception causes, or 0x1c for CHERI faults. CHERI faults will encode
the CHERI-specȋc fault code and the faulting register in mtval. You can de-
compose this into its component parts by calling CHERI::extract_cheri_mt-
val.

5. Compartments and libraries

106

Documentation for the extract_cheri_mtval function
std::pair<CauseCode, RegisterNumber>
extract_cheri_mtval(uint32_t mtval)

Decompose the value reported in the mtval CSR on CHERI exception
into a pair of CauseCode and RegisterNumber.
Will return CauseCode::Invalid if the code ̑eld is not one of the de-
̑ned causes and RegisterNumber::Invalid if the register number is
not a valid register number. Other bits of mtval are ignored.

The error handler is calledwith interrupts enabled, even if in-
terrupts were disabled in the faulting code. Latency-critical code
should never depend on the error handler for meeting its tim-
ing.

The spilled register ̑le does not contain a tagged value for the program
counter capability. This is to prevent library functions that run with inter-
rupts disabled or with access to secrets from accidentally leaking on faults.
All other registers will be preserved exactly as they are in the register ̑le.

Error handlers are somewhat similar to UNIX signal handlers,
but with some important di̛erences. They are invoked for syn-
chronous faults, not arbitrary event notȋcation. Importantly,
they are required only to handle the current compartment's er-
rors. You cannot, for example, call malloc in a signal handler
because it would deadlock (or corrupt state) if the signal arrives
during a call to malloc or free. In contrast, if a call to heap_al-
locate fails then that error will be handled in the allocator com-
partment. Your error handlerwill never be invoked in themiddle
of a call to the allocator and so it is ̑ne to use error handlers to
release locks and free memory.

At the end of your error handler, you have two choices. You can either ask
the switcher to resume, installing your modȋed register ̑le (rederiving the

5.12. Writing rich error handlers

107

PCC from the compartment's code capability), or you can ask it to continue
unwinding.

Error handling functions are used for resource cleanup. For example, you
may wish to drop locks when an error occurs, or you may wish to reset the
compartment entirely. The heap_free_all function, discussed in Chapter 7,
helps with the latter.

5.13. Using scoped error handling
You are unlikely to ever write a stackless error handler. Most of the time, you
will want to link the one provided by the unwind_error_handler target. This
can be adopted by adding add_deps("unwind_error_handler") to your com-
partment's target in xmake.lua.

The scoped error handling is built on top of the standard C
setjmp and longjmp functions. These are quite unusual because
setjmp can return twice. When you call it, it initialises a jm-
p_buf structure with some state about the current stack frame
and returns zero. You can then pass this jmp_buf down the stack
to longjmp. This longjmp call will make the original setjmp re-
turn a second time (immediately destroying any stack frames be-
tween the setjmp and longjmp calls), with the value passed into
longjmp as the second argument.

This implementation is intended to be used with a set of macros that pro-
vide exception-like error handling. These maintain a stack of jmp_buf struc-
tures, as dȇned by setjmp. The head of the linked list is stored at the top of
the region of the stack that is visible to the current compartment invocation,
in a gap left by the switcher. Each CHERIOT_DURINGmacro invocation pushes
an entry onto a stack that allows returning and each CHERIOT_END_HANDLER
macro pops the top entry.

Between these two, a CHERIOT_HANDLER is the equivalent of the start of a
catch block. This dȇnes the start of a region where code will run if an error
is triggered. You can see this in action in Listing 42. This uses __builtin_-
trap, which the compiler will transform into an invalid instruction, to force
a trap. This is a placeholder for anything that might raise an error (including
in nested function calls), such as a bounds violation, a use-after-free bug, a
null-pointer dereference, and so on.

5. Compartments and libraries

108

Documentation for the CHERIOT_DURINGmacro
CHERIOT_DURING

Simple error handling macros. These are modelled on the OpenStep
exception macros and are similarly built on top of setjmp. Code be-
tween CHERIOT_DURING and CHERIOT_HANDLER corresponds to a try
block. Code between CHERIOT_HANDLER and CHERIOT_END_HANDLER
corresponds to a catch block, though no exception value is actually
thrown.
Any automatic-storage values accessed in both blocks must be de-
clared volatile.

16 Debug::log("About to try something unsafe.");
17 CHERIOT_DURING
18 {
19 Debug::log("In during block");
20 if (shouldTrap)
21 {
22 // This will unconditionally trap.
23 __builtin_trap();
24 }
25 }
26 CHERIOT_HANDLER
27 {
28 Debug::log("Something bad happened!");
29 }
30 CHERIOT_END_HANDLER
31 Debug::log("Finished unsafe block.");

Lཥၑၣཥ࿏༥ 42. Example of using scoped error handling
[from: examples/error_handling/errors.cc]

If you run this example with shouldTrap set to false then it will generate
the following output:
Error handling example: About to try something unsafe.
Error handling example: In during block
Error handling example: Finished unsafe block.

The code in the CHERIOT_DURING block runs, the code in the CHERIOT_HAN-
DLER block is omitted, and control ̓ow resumes after CHERIOT_END_HAN-

DLER. In contrast, if shouldTrap is true then the trap will transition into the

5.13. Using scoped error handling

109

switcher, which will then invoke the compartment's stackless error handler,
which will then transfer control into the CHERIOT_HANDLER block and you'll
see output like this:
Error handling example: About to try something unsafe.
Error handling example: In during block
Error handling example: Something bad happened!
Error handling example: Finished unsafe block.

This lets you do things like release locks or clean up per-call state in case
of failure.

5.14. Conventions for cross-compartment calls
If a compartment faults and force unwinds to the caller then the return regis-
ters will be set to -1. This makes it easy to use the UNIX convention of return-
ing negative numbers to indicate error codes. The value -1 is -ECOMPARTMENT-
FAIL and other numbers from errno.h can be used to indicate other failures.

A CHERIoT capability is e̛ectively a tagged union of a pointer and 64 bits
of data. You can take advantage of this in functions that return pointers to
return either an integer or, if the result is not tagged, an error code.

To see a slightly less-contrived version of error handling, Listing 43 is a
version of Listing 40, rewritten to use error handling instead of checking. The
original version checked all of the properties of the string and protected it-
self against concurrent mutation. This version still uses check_pointer, be-
cause this also prevents information disclosure by ensuring that the string
does not overlap the current compartment invocation's stack. You could omit
this check if you are not worried about information disclosure. For capabili-
ties that you write through, this check is very important because otherwise
you may write over parts of your own stack and corrupt internal state by ac-
cident.

The example then simply tries to read the bytes, assuming that they are a
valid null-terminated C string.

This version uses the C++ wrappers that take lambdas, rather than the
macro versions, but the semantics are the same as described earlier. When
you run this, you should see exactly the same output as the original version:
No null
Non-malicious string

The string that lacks a null terminator will now simply be written looking
for one. The attempt to read one byte past the end will trigger a bounds ex-
ception. This will then invoke the second lambda passed to on_error, which

5. Compartments and libraries

110

15 /// Write a message to the UART.
16 int uart_puts(const char *msg)
17 {
18 // Prevent information disclosure, check that this does
19 // not overlap with our stack region. Check for obvious
20 // errors at the same time.
21 if (!check_pointer(msg))
22 {
23 return -EINVAL;
24 }
25 static FlagLockPriorityInherited lock;
26 // Prevent concurrent invocation
27 LockGuard g(lock);
28 int result = 0;
29 // Assume this is a null-terminated string, report an
30 // error on exceptions if not.
31 on_error(
32 [&]() {
33 for (const char *m = msg; *m != '\0'; m++)
34 {
35 MMIO_CAPABILITY(Uart, uart)->blocking_write(*m);
36 }
37 },
38 [&]() { result = -EINVAL; });
39 MMIO_CAPABILITY(Uart, uart)->blocking_write('\n');
40 return result;
41 }

Lཥၑၣཥ࿏༥ 43. Using structured error handling to ensure that a function does not
crash. [from: examples/yolo_arguments/uart.cc]

will set the error code and resume. The other errors are caught by the check-
_pointer call. If you remove that call, you will instead see the following out-
put:
No null

Non-malicious string
Now, each call is printing the trailing newline, even if it encountered a

fault while reading the message.

5.14. Conventions for cross-compartment calls

111

Chapter 6.
Communicating between threads
CHERIoT RTOS provides threads as a core abstraction. Threads run until they
either yield or are preempted via an interrupt, and then later resume from
the samepoint. There are a small number of scheduler APIs that allow threads
to block; higher-level APIs from other compartments may block by indirectly
invoking them.

Remember that, in most respects, the scheduler is just another compart-
ment. It doesn't runwith elevated privileges. It makes a decision about which
thread to run next, but it is not able to see the stacks or register states associ-
atedwith threads.When another thread calls into the scheduler (for example,
to sleep or to wake other threads), the call is just like any other cross-com-
partment call and uses the same mechanism.

6.1. Dȇning threads
Threads in CHERIoT RTOS cannot be dynamically created. Creating threads
at run time would require allocating stacks at run time. The no-capture guar-
antees that CHERIoT RTOS enforces are based on the guarantee that no code
other than the loader has access to two stacks' memory at a time and so the
switcher can zero stacks and avoid leaks. The only store-local capabilities
that a thread ever has access to are derived from its current stack. Allow-
ing stack creation would violate that: at least the memory allocator would
have access to multiple stacks at once. It would be possible to allocate stacks
from a separate pool, but that's not really di̛erent from allocating stacks
up front and having a small compartment that switches them from one use
to another or implements a thread pool. There is an example thread pool in
lib/thread_pool in the RTOS SDK, with its interface dȇned in the thread-
_pool.h header, that you can either use directly or use as inspiration for your
own design, if you want to create new thread-like contexts.

If a thread entry point returns then the thread exits but, importantly, this
does not free the thread's stack or trusted stack. The memory owned by a
thread is assigned to that thread as long as the system runs.

Threads in CHERIoT RTOS are constructed with four properties:
• The size of their stack.
• The size of their trusted stack.
• Their priority.
• The entry point where they start executing.

113

The stack size means the same as on any other platform. Specȋcally on
CHERIoT, the stack-pointer capability will be bounded to this size (rounded
up if necessary for alignment) and any over̓ow of the stack, even by a single
byte, will trap. The trusted stack size is the maximum number of cross-com-
partment calls that this thread can do. Each cross-compartment call invokes
the switcher, which pushes a new frame onto the trusted stack describing
where to return.

In the current version, each trusted stack frame is three ca-
pabilities (24 bytes). A larger trusted stack does not make much
di̛erence to total memory consumption.

The priority of threads matters only in relative terms. Like FreeRTOS (and
unlike UNIX), higher numbers mean higher priorities. The scheduler has
some data structureswhose size depends on the number of priorities, so com-
piling with fewer priorities can make the scheduler smaller.

The entry point property is a compartment's entry point. It must be ex-
posed as described in Chapter 5. Thread entry points take no arguments and
return no arguments.

Onmost other systems, thread creation functions take a pointer. This does
not make sense for threads that are not dynamically created because there is
no context for their creation.

6.2. Identifying the current thread
Youwill sometimes need to knowwhich thread is currently running. This can
be for something as simple as debugging butmay also beneeded formaintain-
ing per-thread data structures. The ID of each thread is stored in the register
save area for that thread and the switcher exposes a library call (thread-
_id_get) to read it.

Thread IDs start at one (not zero!) because zero is used to indicate the idle
thread and so is never visible. The thread_count function returns the num-
ber of threads that have been created in the system. This is not decremented
when threads exit, so it provides the upper bound on the number of threads
that may exist. This can be used to size data structures that are indexed by
thread ID.

6. Communicating between threads

114

Documentation for the thread_id_get function
uint16_t thread_id_get()

Return the thread ID of the current running thread. This is mostly
useful where one compartment can run under di̛erent threads and
it matters which thread entered this compartment.
User threads (that is, those dȇned in the xmake ̑rmware con̑gura-
tion) are 1-indexed, with 0 indicating primordial idle and scheduling
contexts. User code never runs in these contexts and so anything us-
ing this result to index into a per-thread array may wish to subtract
one and avoid allocating an array element for the idle thread.
This is implemented in the switcher.

Documentation for the thread_count function
uint16_t thread_count()

Returns the number of user threads (that is, those dȇned in the
xmake ̑rmware con̑guration), including threads that have exited.
This API never fails, but if the trusted stack is exhausted and it can-
not be called then it will return -1. Callers that have not probed the
trusted stack should check for this value.
The result of this is safe to cache because it will never change over
time.

⚠

Somewhat counter intuitively, thread_id_get is faster than
thread_count to call. The former is a libcall that that switcher
implements, the latter is a cross-compartment call into the
scheduler. This is not normally a problem because the result
of thread_count does not change and can be cached in a com-
partment, whereas the result of thread_id_get depends on the
current thread and cannot be safely cached.

6.2. Identifying the current thread

115

The current_thread example shows calling these functions. The entry
point function for this is shown in Listing 44 and the thread dȇnitions from
the xmake.lua ̑le in Listing 45.

9 /// Thread entry point.
10 void __cheriot_compartment("current") entry()
11 {
12 for (int i = 0; i < 2; i++)
13 {
14 printf("Current thread: %d of %d (iteration %d)\n",
15 thread_id_get(),
16 thread_count(),
17 i);
18 }
19 }

Lཥၑၣཥ࿏༥ 44. A simple example that prints the current thread
[from: examples/current_thread/current.cc]

30 -- Threads to select
31 target:values_set("threads", {
32 {
33 compartment = "current",
34 priority = 1,
35 entry_point = "entry",
36 stack_size = 0x400,
37 trusted_stack_frames = 2
38 },
39 {
40 compartment = "current",
41 priority = 2,
42 entry_point = "entry",
43 stack_size = 0x400,
44 trusted_stack_frames = 2
45 }
46 }, {expand = false})

Lཥၑၣཥ࿏༥ 45. The thread dȇnitions for the current-thread example
[from: examples/current_thread/xmake.lua]

Note that the second thread has a higher priority than thread one. When
you run this example, you should see output like this:
Current thread: 2 of 2 (iteration 0)
Current thread: 2 of 2 (iteration 1)
Current thread: 1 of 2 (iteration 0)
Current thread: 1 of 2 (iteration 1)

6. Communicating between threads

116

The higher-priority thread is running until it exits. Normally, a higher-
priority thread would yield to allow another thread to run, as we'll see later
in this chapter.

6.3. Limiting blocking with timeouts
Several RTOS APIs have timeouts. These are expressed as a pointer to a Time-
out structure. This design is intended to allow a single timeout to be passed
down a chain of operations.

Timeouts represent time spent blocking (yielding waiting to
be runnable), not time spent running (doing useful work).

Timeoutsmeasure time in scheduler ticks. A tick is a single scheduling quan-
tum,which depends on the board con̑guration. This is theminimumamount
of time forwhich it is plausible for a thread to sleep. If a thread sleeps, another
thread becomes runnable and is then allowed to run (unless it also yields).

Although ticks exist as a unit of accounting, the CHERIoT RTOS sched-
uler is a tickless scheduler. Traditional schedulers schedule a timer interrupt
at a ̑xed quantum and make a scheduling choice at each call. This can be
ine̕cient because a high-priority thread will be routinely interrupted and
then rescheduled (because it remains the highest-priority thread). A tickless
scheduler avoids this and instead, before scheduling a thread, sets a timer in-
terrupt to ̑re at the next point when another thread may be woken.

For example, consider the case where a high-priority thread sleeps for
three ticks and a lower-priority thread runs. With a traditional scheduler, a
timer interruptwill ̑re three times. Each time, the schedulerwill do some ac-
counting and then reschedule the lower-priority thread. In contrast, a tickless
scheduler will con̑gure the timer to ̑re once, after three ticks have elapsed.
At that point, the high-priority thread is runnable and so will be scheduled.

The timeout structure captures the amount of time that is allowed to block
and the number of ticks for which it has blocked. Each subsequent call that
is passed the same timeout structure may increase the amount of slept time
and decrease the remaining time. This means that a timeout is stateful. If you
pass a pointer to the same timeout tomultiple APIs, they will all consume the
ticks that were set when the timeout structure was initialised. This is nor-
mally useful because it means that a function that calls multiple functions
that block can have a timeout parameter and forward it to each of the func-
tions that it calls, but it means that you can't just create one timeout at the

6.3. Limiting blocking with timeouts

117

start of your thread and keep using it (unless you initialise it to the unlimited
timeout value).

A thread may block for more than the permitted limit if it is
sleeping while a higher-priority thread runs. Only the highest-
priority thread canmake strong realtime guarantees in the pres-
ence of other runnable threads.

Functions that take a timeout should always expect it as the ̑rst argu-
ment. This allows it to be forwarded to subsequent calls trivially.

Timeoutsmay not be stored on the heap. Any function check-
ing timeouts may refuse to accept a heap-allocated timeout. It is
di̕cult to workwith heap-allocated timeouts because theymay
be deallocated while the thread is sleeping, which would then
cause it to crash upon updating the timeout structure.

6.4. Sleeping
Sleeping for a bounded number of ticks is the simplest form of blocking avail-
able. The thread_sleep call causes the caller to yield until a certain number
of ticks have run.

As with other calls that take a Timeout, the number of ticks that have
elapsed during the call can be checked by reading the elapsed ̑eld of the
timeout structure.

Sleeping in a system with an RTOS scheduler con̓ates two concepts:
• Waiting for some time to elapse.
• Allowing lower-priority threads to run.

The thread_sleep call supports both of these but understanding how they
di̛er requires understanding a little of the scheduler's behaviour. Recall that
CHERIoT RTOS has a tickless scheduler.

This means that, although it uses ticks as an abstraction for dȇning
scheduling quanta, it does not schedule a regular timer interrupt. When two
threads at the same priority level are runnable, the scheduler will request a
timer interrupt to preempt the current one and switch to the other. If the
running thread has no peers, the scheduler will allow it to run until either it
yields or another higher or equal-priority thread's timeout expires. The tick
abstraction remains as a convenient way of expressing time to the scheduler,
but internally the scheduler tracks only elapsed cycles.

6. Communicating between threads

118

Documentation for the thread_sleep function
int thread_sleep(struct Timeout * timeout, uint32_t flags)

Sleep for at most the specȋed timeout (see timeout.h).
The thread becomes runnable once the timeout has expired but a
higher-priority thread may prevent it from actually being scheduled.
The return value is a saturating count of the number of ticks that have
elapsed.
A call of thread_sleep with a timeout of zero is equivalent to yield,
but reports the time spent sleeping. This requires a cross-compart-
ment call and return in addition to the overheads of yield and so
yield should be preferred in contexts where the elapsed time is not
required.
The flags parameter is a bitwise OR of ThreadSleepFlags.
A sleeping threadmaybewoken early if no other threads are runnable
or have earlier timeouts. The thread with the earliest timeout will be
woken ̑rst. This can cause a yielding thread to sleep when no other
thread is runnable, but avoids a potential problem where a high-pri-
ority thread yields to allow a low-priority thread to make progress,
but then the low-priority thread does a short sleep. In this case, the
desired behaviour is not to wake the high-priority thread early, but to
allow the low-priority thread to run for the full duration of the high-
priority thread's yield.
If you are using thread_sleep to elapse real time, pass ThreadSleep-
NoEarlyWake as the ̓ags argument to prevent early wakeups.

By default, if 0 is passed as the flags argument to thread_sleep, the sleep
operation is treated as a yield. This is a way for the running thread to com-
municate to the scheduler that it is happy for other (lower or equal-priority)
threads to run for up to the specȋed number of ticks. The scheduler may
wake the yielding thread if no other thread is going to be runnable within
that number of ticks. This allows high-priority threads to allow other threads
to run, but continue using the CPU if no other thread is runnable.

6.4. Sleeping

119

In some cases, you really want to sleep. For example, if you're updating a
clock display, you will want to run once a second or once a minute to update
the display. The same applies if you're sending keep-alive packets or period-
ically monitoring some other component. In these cases you dȇnitely have
no useful work to do, irrespective of the state of any other threads that can or
cannot run. You can pass ThreadSleepNoEarlyWake as the flags argument to
thread_sleep to indicate that you really want to sleep.

You can see the e̛ect of sleeping in the thread_sleep example, as shown
in Listing 46. This is a modȋed version of the current_thread example from
earlier, now sleeping in each loop iteration.

10 /// Thread entry point.
11 void __cheriot_compartment("current") entry()
12 {
13 for (int i = 0; i < 2; i++)
14 {
15 printf("Current thread: %d of %d\n",
16 thread_id_get(),
17 thread_count());
18 Timeout t{1};
19 thread_sleep(&t);
20 }
21 printf("Cycles elapsed: %lld\n", rdcycle64());
22 }

Lཥၑၣཥ࿏༥ 46. A simple example of thread sleeping
[from: examples/thread_sleep/current.cc]

If you run this, you should see output that looks somewhat like this:
Current thread: 2 of 2
Current thread: 1 of 2
Current thread: 2 of 2
Current thread: 1 of 2
Cycles elapsed: 262193
Cycles elapsed: 265806

As before, thread two runs ̑rst, but then it yields and allows thread one to
run. Thread one then yields and allows thread two to run, and so on. If thread
one did not yield then it would be preempted after one tick.

Trymodifying this example, adding ThreadSleepNoEarlyWake as a second
argument to the thread_sleep call. You should now see output that looks
very similar, but shows lower cycle counts at the end:

6. Communicating between threads

120

Current thread: 2 of 2
Current thread: 1 of 2
Current thread: 2 of 2
Current thread: 1 of 2
Cycles elapsed: 249233
Cycles elapsed: 252273

If you run this with the Sail simulator, do not be surprised
if the cycle counts look very small. Sail is not a cycle-accurate
model. The cycle count is guaranteed to bemonotonic, but not to
represent a real system in any way. The snippets in this section
are using the Ibex simulator.

Here you see that the total execution time has gone from 265,806 cycles
to 252,273. In the original version, when thread one slept (after doing far
less than one tick's worth of work), there were no runnable threads so the
scheduler does nothing for a while. Eventually, thread two (the high-priority
thread) is runnable again and it resumes. In the version with ThreadSleep-
NoEarlyWake, thread two can resume as soon as thread one sleeps. Similarly,
when thread two yields for the second time, thread one will resume.

6.5. Waiting for events with futexes
The scheduler exposes a set of futex APIs as a building block for various no-
tȋcation and locking mechanisms. Futex is a contraction of 'fast userspace
mutex'. This does not quite apply on a CHERIoT system, where there is no
userspace, but the core concept of avoiding a privilege transition on fast paths
still applies.

A CHERIoT RTOS futex is a 32-bit word where the scheduler provides com-
pare-and-sleep (futex_timed_wait) and notify (futex_wake) operations.

In C++, std::atomic<uint32_t> provides wait, notify_all,
and notify_one methods that expose futex functionality and
may be more convenient to call than the raw futex APIs. These
include some additional (non-standard) overloads that expose
more of the underlying futex functionality.

A futex allows you to use atomic operations on a 32-bit word for fast paths
but then sleep andwake threadswhen they are blocked, rather than spinning.

6.5. Waiting for events with futexes

121

Documentation for the futex_wake function
int futex_wake(uint32_t * address, uint32_t count)

Wakes up to count threads that are sleeping with futex_timed_wait
on address.
The address argumentmust be a valid unsealed pointer with a length
of at least four after the address but the scheduler does not require
any explicit permissions. The scheduler never needs store access to
the futex word. Removing store permission means that a compro-
mised scheduler can cause spurious wakes but cannot tamper with
the futexword. If, for example, the futexword is a lock then the sched-
uler can wake threads that are blocked on the lock but cannot release
the lock and so cannot make two threads believe that they have si-
multaneously acquired the same lock.
The return value for a successful call is the number of threads that
were woken. -EINVAL is returned for invalid arguments.

Documentation for the futex_timed_wait function
int futex_timed_wait(Timeout * ticks, const uint32_t *
address, uint32_t expected, uint32_t flags)

Compare the value at address to expected and, if they match, sleep
the thread until a wake event is sent with futex_wake or until the
thread has slept for ticks ticks.
The value of ticks specȋes the permitted timeout. See timeout.h for
details.
The address argument must permit loading four bytes of data after
the address.
The flags argument contains ̓ags that may control the behaviour of
the call. This is either FutexNone (zero) for the default behaviour or
FutexPriorityInheritance if the low 16 bits should be treated as a
thread ID for priority inheritance.
This returns:

• 0 on success: either *address and expected di̛er or a wake is
received.

• -EINVAL if the arguments are invalid.
• -ETIMEOUT if the timeout expires.

Anything that can be implemented with a spin-wait loop can usually bemade

6. Communicating between threads

122

more e̕cient with a futex.
For example, consider the simplest possible spinlock, which uses a single

word containing a one to indicate locked and a zero to indicate unlocked.
When you encounter a one, you sit in a loop doing an atomic compare-and-
swap trying to replace a zero with a one.When this succeeds, you've acquired
the lock.

Onmost operating systems running on single-core processors, you will sit
in this loopuntil you exhaust your quantum, then a timerwill ̑re and another
thread will run. Your thread may be scheduled before the thread that owns
the lock ̑nishes, so you'll then spin for another quantum.

Thȇrst simple optimisation on this design is to yield in the spin loop. This
will allow other threads to run but the waiting thread remains runnable and
so may be rescheduled early. With an RTOS priority scheduler, if the thread
that's waiting is a higher priority than the thread that owns the lock, the
thread that owns the lock may never be scheduled.

A futex lets the waiting thread sleep. The futex_timed_wait call will com-
pare the value in the futexword to the expected value (one, indicating locked,
in this case) and, if theymatch,will send the thread to sleep and remain asleep
until the thread owning the lock does a futex_wake call when unlocking.

A more complete futex-based lock uses three values in the lock word to
di̛erentiate between locked states with and without waiters. This allows the
uncontended case to avoid any cross-compartment calls.

Futexes can be used to build other waiting mechanisms beyond locks. A
barrier is the simplest primitive that you can build with a futex. This is a very
simple primitive that blocks every thread until all threads have reached the
same point in the code. Listing 47 shows howa barriermight be implemented,
using the std::atomic wrapper around futexes.

The counter is set to the number of threads (two in this case). When a
thread arrives at the barrier, it decrements the counter. Note that the decre-
ment operator on std::atomic is an atomic decrement, so exactly one thread
should take the counter to zero. The thread that set the counter to zero then
notȋes any waiting threads to wake. Other threads, as they arrive, will sit us-
ing the waitmethod, which is a thin wrapper around futex_wait.

The loop on line 23 is important. Imagine that one thread decrements the
counter to one and is then preempted. Then another thread decrements it
to zero and does the notify_all (futex_wake) call. The ̑rst thread, when it

6.5. Waiting for events with futexes

123

10 /// Thread entry point.
11 __cheriot_compartment("barrier") void entry()
12 {
13 static std::atomic<uint32_t> barrier = 2;
14 printf("Thread: %d arrived at barrier\n",
15 thread_id_get());
16 uint32_t value = --barrier;
17 if (value == 0)
18 {
19 barrier.notify_all();
20 }
21 else
22 {
23 while (value != 0)
24 {
25 barrier.wait(value);
26 value = barrier;
27 }
28 }
29 printf("Thread: %d passed barrier\n", thread_id_get());
30 }

Lཥၑၣཥ࿏༥ 47. Implementing a barrier with a futex [from: examples/barrier/barrier.cc]
resumes will try to wait on the futex, but the value has now changed. Fortu-
nately, futex_wait takes an expected value and so, if the futex word does not
have this value then the call will resume immediately.

If this examplehad three threads, a similar race could occur in the opposite
direction. If the ̑rst thread decremented from three to two and was then
preempted by a second thread, it would call futex_wake with an expected
value of two, but the value would now be one. It would then wake, because
the value does not match. If this happens, it would reload the value, note that
it is not zero, and retry waiting. The futex APIs are designed to allow this
combination of wait and atomic operation to work for any interleaving.

Try modifying this example by adding more threads (don't forget to in-
crease the initial value of the counter!).

6.6. Building locks from futexes
The locks library provides a set of futex-based locks. The locks.h header
exposes the interface to this library.
Ticket locks

provide guaranteed FIFO semantics for waiters.
Flag locks

6. Communicating between threads

124

are simple locks that wake waiters in the order of their thread prior-
ities. These can optionally provide priority inheritance (see Section
6.7).

Recursive mutexes
wrap a priority-inheriting ̓ag lock and allow the same thread to ac-
quire a lock multiple times.

Semaphores
provide a counting semaphore abstraction.

C++ users may prefer to use the wrappers provided in locks.hh, which imple-
ment a uniform interface for di̛erent lock types. This header also dȇnes a
NoLock class that provides the same interface but does not do any locking so
generic data structures can be implemented with and without locking.

You can see the di̛erence between the lock types by running the locking
example. This uses a lock declared at the top of the ̑le, as shown in Listing
48. This is using a ̓ag lock in the uncommented version. You can change it to
using a ticket lock by commenting out the ̑rst declaration and uncomment-
ing the second.

10 // Comment out this line and uncomment
11 // the next one to see how ticket locks
12 // behave.
13 FlagLock lock;
14 // TicketLock lock;

Lཥၑၣཥ࿏༥ 48. Declaring a lock in C++ [from: examples/locking/locking.cc]

The rest of this ̑le contains three versions of the function shown in Listing
49. One of these is dȇned for each of three threads, which are created with
three di̛erent priorities. The do_useful_work function in the example just
calls thread_sleep with a timeout of one second, but in real code would be
doing the work that must be done with the lock held.

When you run this example, you should see output like this:
High priority thread acquired lock
High priority thread acquired lock
High priority thread acquired lock
High priority thread acquired lock
High priority thread acquired lock

This is an example of starvation. The low- andmedium-priority threads are
bothwaiting for the lock, but the high-priority thread is not yielding between
releasing and reacquiring the lock and so they are never woken.

If you change this to a ticket lock, the output will change to this:

6.6. Building locks from futexes

125

29 __cheriot_compartment("locking") void low()
30 {
31 while (true)
32 {
33 lock.lock();
34 printf("Low priority thread "
35 "acquired lock\n");
36 do_useful_work();
37 lock.unlock();
38 }
39 }

Lཥၑၣཥ࿏༥ 49. The low-priority thread entry point for the locking example
[from: examples/locking/locking.cc]

High priority thread acquired lock
Medium priority thread acquired lock
Low priority thread acquired lock
High priority thread acquired lock
Medium priority thread acquired lock
Low priority thread acquired lock

Ticket locks are modelled after the ticket dispensers that are used to man-
age queues of people.When you arrive, you take the ticketwith the next num-
ber. There is a display showing the current number and you wait until the
display matches your number. A ticket lock is implemented with two coun-
ters. The ̑rst counter is used to assign tickets. When you try to acquire the
lock, you atomically fetch-and-increment the counter. The result of the fetch
is your ticket number. You then wait until the second counter is equal to your
ticket number. When you release the lock, you increment the second counter.
This is built from futexes by doing a futex_wait on the counter word to block
acquiring the lock and a futex_wake when you release the lock.

In this example, the high-priority thread runs ̑rst and acquires the lock.
Next, while it's yielding in the middle, the medium-priority thread tries to
acquire the lock and blocks. Before blocking, it successfully receives a ticket
and so is next in line for the lock. The low-priority thread then does the same.
When the high-priority thread resumes, it also acquires a ticket and is now in
the queue to run after the other two threads.

Each thread runs in this version, but a high-priority thread is blockedwait-
ing for two lower-priority threads to proceed, which may not be desirable.

6. Communicating between threads

126

6.7. Inheriting priorities
Simple futex-based locks are vulnerable to priority inversion, where a high-
priority thread is unable to make progress because a lock is held by a lower-
priority thread. We saw an example of this with ticket locks but the same is
also possible with ̓ag locks, as we'll see in the priority_inheritance exam-
ple.

This starts with the high-priority thread shown in Listing 50 running. This
will sit in a loop, ̑rst yielding for up to a second to allow other threads to
run, then trying to acquire a lock. This example is using LockGuard, a simple
RAII wrapper around the RTOS' locks. The constructor variant here with two
arguments takes a timeout in addition to the lock. Lock guards are convertible
to bool and convert as true if and only if the lock is acquired. This allows the
thread to print whether the lock was acquired, or it timed out waiting for the
lock.

16 __cheriot_compartment("priority_"
17 "inheritance") void high()
18 {
19 // Let the low and
20 // medium-priority threads start
21 Timeout t(MS_TO_TICKS(1000));
22 thread_sleep(&t);
23 while (true)
24 {
25 t = Timeout(MS_TO_TICKS(1000));
26 if (LockGuard g{lock, &t})
27 {
28 printf("High-priority thread acquired the lock!\n");
29 }
30 else
31 {
32 printf("High-priority thread failed to acquire the "
33 "lock!\n");
34 }
35 }
36 }

Lཥၑၣཥ࿏༥ 50. A high-priority thread that will be starved
[from: examples/priority_inheritance/priority_inheritance.cc]

While this thread yields, the thread shown in Listing 51 runs. This ̑rst
yields and then in̑nite loops. The in̑nite loop in this example is a place-
holder for anything that does long-running work and does not yield.

6.7. Inheriting priorities

127

42 __cheriot_compartment("priority_"
43 "inheritance") void medium()
44 {
45 // Let the low-priority thread run
46 // until it yields
47 Timeout t(MS_TO_TICKS(1000));
48 thread_sleep(&t);
49 printf("Medium priority thread entering infinite loop "
50 "and not yielding\n");
51 while (true)
52 {
53 x++;
54 }
55 }

Lཥၑၣཥ࿏༥ 51. A medium-priority thread that will starve a high-priority thread
[from: examples/priority_inheritance/priority_inheritance.cc]

While the medium-priority thread yields, the thread shown in Listing 52
runs. This acquires the lock and also yields. This thread is the lowest priority
and so, even without the explicit yield, a similar thread in a more complex
programcould easily be preemptedwith the lockheld. The yield simply forces
it to happen every time, to trigger the problem.

Prior to C++26, in̑nite loops are undȇned behaviour in C++ if
they do not have any side e̛ects. The x++ in this loop is simply
incrementing an atomic integer tomake sure that this loop is not
optimised away.

59 __cheriot_compartment("priority_"
60 "inheritance") void low()
61 {
62 while (true)
63 {
64 lock.lock();
65 printf("Low-priority thread acquired the lock\n");
66 Timeout t(MS_TO_TICKS(500));
67 thread_sleep(&t, ThreadSleepNoEarlyWake);
68 printf("Low-priority thread releasing the lock\n");
69 lock.unlock();
70 }
71 }

Lཥၑၣཥ࿏༥ 52. A low-priority thread that will be preempted with a lock held
[from: examples/priority_inheritance/priority_inheritance.cc]

6. Communicating between threads

128

After the low-priority thread yields (or is preempted) themedium-priority
thread will resume and in̑nite loop (or, at least, does something that doesn't
yield). The low-priority thread cannot run, because a higher-priority thread
is runnable. When the high-priority thread tries to run, it sees that the lock is
already acquired and blocks, waiting for it to be ̑nished. Unfortunately, the
thread that could release the lock never runs and so you see output like this:
Low-priority thread acquired the lock
Low-priority thread releasing the lock
Low-priority thread acquired the lock
Medium priority thread entering infinite loop and not yielding
High-priority thread failed to acquire the lock!
High-priority thread failed to acquire the lock!
High-priority thread failed to acquire the lock!

This example is quite easy to debug, because the starvation is total: the
high-priority thread never makes progress. If the medium-priority thread
yielded sometimes, this would be much worse because the high-priority
thread would make progress but at a far slower rate than its priority would
imply.

Priority inheritance is the solution to this kind of problem. With priority
inheritance, a thread that blocks on a lock that is held by a lower-priority
thread will temporarily loan its priority to the thread the owns the lock. This
allows the lower-priority thread run and release the lock. If you change the
FlagLock in the example to a FlagLockPriorityInherited, you will see this
output:
Low-priority thread acquired the lock
Low-priority thread releasing the lock
Low-priority thread acquired the lock
Medium priority thread entering infinite loop and not yielding
Low-priority thread releasing the lock
High-priority thread acquired the lock!
High-priority thread acquired the lock!
High-priority thread acquired the lock!

Now, while the medium-priority thread runs, the high-priority thread
waits and tries to acquire the lock. The lock is held and so it will try to loan its
priority to the thread that owns it. This allows the low-priority thread to run
in preference to the medium-priority one. The low-priority thread runs and
releases the lock, allowing the high-priority thread to resume and acquire the
lock.

The futex APIs implement this by storing the thread ID of the owning
thread in the bottom 16 bits of the futex word and passing FutexPriority-
Inheritance to the flags argument in the wait call. The specȋed thread will
have its priority set to the highest priority of any of the waiting threads. The

6.7. Inheriting priorities

129

priority boost lasts until the waiters time out or the boosted thread releases
the lock, whichever happens ̑rst. A single thread can hold multiple priority-
inheriting locks and receive priority boosts from all of them.Most of the time,
you will not use this directly and will instead use the priority-inheriting lock
APIs from their C or C++ wrappers.

The priority inheritance mechanism can also be used to build asymmetric
locks. These have a fast path that doesn't do any cross-compartment calls and
a slow path that does. You can ̑nd one example of this in the hazard pointer
mechanism for short-lived claims. Thismust detectwhen a threadhas tried to
add a hazard pointer while the allocator is scanning the list, without slowing
down the allocator. Before reading the list, the allocator increments the top
16 bits of the futex word and sets the low 16 to the thread ID performing the
operation. Threads updating the hazard set check the futex word before and
after updating the list. If the top 16 bits have changed, they know that the
allocator has scanned the list and they must retry. If the top 16 bits contain
an odd value, the allocator is currently scanning the list and they must wait.
They can do a priority-inheriting wait with a one-tick timeout even though the
allocator will not ever call futex_wake. They will yield for one tick, boosting the
priority of the thread that's currently in the allocator, but then resume at the
end of the tick.

6.8. Securing futexes
Most of the time you will want to use futexes (and the locks that wrap them)
to synchronise operations within a single compartment. Futex-based locks
rely on the contents of the lock word to be valid. For example, if a ̓ag lock is
directly accessible by two mutually distrusting compartments, one can write
an invalid value to theword and either prevent the other fromwakingwaiters
or cause it to spuriously believe that it has acquired the lock.

This is not normally a limitation because locks typically protect some data
structure or other resource that should not be concurrently mutated bymul-
tiple threads. Providing mutable views of such a structure to multiple com-
partments is almost certainly a security vulnerability, even without attacks
on the futex.

There is one situation where futexes are safe to share across compartment
boundaries. If you have a component that others trust for availability, it can
share read-only views of a futex to allow waiting for an out-of-band event.
The scheduler does this for interrupts (see Chapter 9), allowing threads to use
the futex wait operation to block until an interrupt is ready.

6. Communicating between threads

130

6.9. Using event groups
The event_group library provides an event-group API that is primarily in-
tended for porting code written against FreeRTOS's event-group APIs. The
event.h header exposes the interface to this library. These APIs do not have
a clear trust model and so should be avoided in new code that is not ported
from FreeRTOS. You can build more convenient interfaces atop futexes for
most synchronisation operations. You may also simply use multiple futexes
and the multiwaiter API (see Section 6.12) to wait for multiple events.

An event group is a set of up to 24 values that can be set or cleared inde-
pendently. Waiters can wait for any or all of an arbitrary subset of these.

Event groups are created with the eventgroup_create function. This re-
turns an opaque handle to the event group, which can be used for setting,
clearing, or waiting on events.

Documentation for the eventgroup_create function
int eventgroup_create(struct Timeout * timeout,
AllocatorCapability heapCapability, struct EventGroup * *
outGroup)

Create a new event group, allocated using heapCapability. The event
group is returned via outGroup.
This returns zero on success. Otherwise it returns a negative error
code. If the timeout expires then this returns -ETIMEDOUT, if memory
cannot be allocated it returns -ENOMEM.

Note that, because this allocatesmemory, it requires an allocation capability.
See Chapter 7 for more information about what this means.

You can then use eventgroup_set and eventgroup_clear to set and clear
some or all of the event ̓ags in this group. Both of these calls return the old
values of the bits.

You can then subsequently wait for some of the events to be set with the
eventgroup_wait function. This takes a set of events to wait for and can wait
until either some or all of them are set.

This call can also atomically clear the bits that you've waited on, giving
them edge-triggered behaviour.

6.9. Using event groups

131

Documentation for the eventgroup_wait function
int eventgroup_wait(Timeout * timeout, struct EventGroup *
group, uint32_t * outBits, uint32_t bitsWanted, _Bool
waitForAll, _Bool clearOnExit)

Wait for events in an event group. The bitsWanted argument must
contain at least one bit set in the low 24 bits (and none in the high
bits). This indicates the specȋc events to wait for. If waitForAll is
true then all of the bits in bitsWantedmust be set in the event group
before this returns. If waitForAll is false then any of the bits in
bitsWanted being set in the event group will cause this to return.
If this returns zero then outBitswill contain the bits that were set at
the time that the condition became true. If this returns -ETIMEDOUT
then outBits will contain the bits that were set at the time that the
timeout expired.
Note: waitForAll requires all bits to be set at the same time. Thismakes
it trivial to introduce race conditions if usedwithmultiplewaiters and
clearOnExit, or if di̛erent threads clear di̛erent bits in the waited
set.
If clearOnExit is true and this returns successfully then the bits in
bitsWanted will be cleared in the event group before this returns.

Documentation for the eventgroup_clear function
int eventgroup_clear(Timeout * timeout, struct EventGroup *
group, uint32_t * outBits, uint32_t bitsToClear)

Clear one or more bits in an event group. The bitsToClear argument
contains the set of bits to clear. This does not wake any threads.
This returns zero on success. If the timeout expires before this returns
then it returns -ETIMEDOUT.
Independent of success or failure, outBits will be used to return the
set of currently set bits in this event group.

6. Communicating between threads

132

Documentation for the eventgroup_set function
int eventgroup_set(Timeout * timeout, struct EventGroup *
group, uint32_t * outBits, uint32_t bitsToSet)

Set one ormore bits in an event group. The bitsToSet argument con-
tains the bits to set. Any thread waiting with eventgroup_wait will
be woken if the bits that it is waiting for are set.
This returns zero on success. If the timeout expires before this returns
then it returns -ETIMEDOUT.
Independent of success or failure, outBits will be used to return the
set of currently set bits in this event group.

6.10. Sending messages
A message queue is a FIFO capable of storing a ̑xed number of ̑xed-sized
entries. There are two distinct use cases for message queues:

• Communicating between two threads in the same compartment.
• Communicating between di̛erent compartments.

In the ̑rst case, the endpoints are in the same trust domain. The mes-
sage_queue_library library provides a simple message-queue API that is
intended for this use case. When the endpoints are in di̛erent trust do-
mains, the endpoints must be protected from tampering. The message_queue
compartment wraps the library in a compartment that exposes an almost
identical interface to the library but with the endpoints exposed as (tamper-
proof) sealed capabilities.

Queues for use within a single compartment are created with queue_cre-
ate, which allocates the ring bưer and returns a pointer to the structure.
This is a struct MessageQueue and callers are at liberty to look inside it di-
rectly. There is no expectation that it is protected from the caller. The func-
tions exposed by the library are (by their nature as shared-library functions)
shared between any compartments that use the library, but this is a code-size
reduction exercise not a security boundary.

Queues can be freed simply with heap_free but doing so may result in
deadlocks. If a thread is blocked trying to send or receive from a queue then
it will remain blocking if the queue is freed out from underneath it. The

6.10. Sending messages

133

Documentation for the queue_create function
int queue_create(Timeout * timeout, AllocatorCapability
heapCapability, struct MessageQueue * * outQueue, size_t
elementSize, size_t elementCount)

Allocates space for a queue using heapCapability and stores a handle
to it via outQueue.
The queue has space for elementCount entries. Each entry is a ̑xed
size, elementSize bytes.
Returns 0 on success, -ENOMEM on allocation failure, and -EINVAL if
the arguments are invalid (for example, if the requested number of
elements multiplied by the element size would over̓ow).

queue_destroy function avoids this by waking all threads. Other threadsmay
then trap immediately after they return and try to read from the queue's
counters, but at least this is recoverable (see Section 5.11).

Documentation for the queue_destroy function
int queue_destroy(AllocatorCapability heapCapability, struct
MessageQueue * handle)

Destroys a queue. Thiswakes up all threadswaiting to produce or con-
sume, andmakes them fail to acquire the lock, before deallocating the
underlying allocation.
Returns 0 on success. This can fail only if deallocation would fail and
will, in these cases, return the same error codes as heap_free.
This function will check the heap capability ̑rst and will avoid up-
grading the locks if freeing the queue would fail.

Messages are sent with queue_send and received with queue_receive.
These are blocking (if allowed to by a non-zero timeout) calls that send or re-
ceive a single message.

6. Communicating between threads

134

Documentation for the queue_receive function
int queue_receive(Timeout * timeout, struct MessageQueue *
handle, void * dst)

Receive a message over a queue specȋed by handle. This expects to
be able to copy the number of bytes specȋed by elementSize. The
message is copied to dst, whichmust have su̕cient permissions and
space to hold the message.
Returns 0 on success, -ETIMEOUT if the timeout was exhausted, -EIN-
VAL on invalid arguments.

Documentation for the queue_send function
int queue_send(Timeout * timeout, struct MessageQueue *
handle, const void * src)

Send a message to the queue specȋed by handle. This expects to be
able to copy the number of bytes specȋed by elementSize when the
queue was created from src.
Returns 0 on success. On failure, returns -ETIMEOUT if the timeout was
exhausted, -EINVAL on invalid arguments.
This expects to be calledwith a valid queuehandle. It does not validate
that this is correct.

⚠

The library interfaces to queues are not intended to be ro-
bust in the presence of malicious callers. They run in the same
security context as the caller, so a caller may abuse them to cor-
rupt its own state. They do aim to be robust with respect to the
source or destination bưer for sending and receiving messages
being invalid or concurrently deallocated. This robustness is im-
plemented using the scoped error handling and so requires call-
ing compartments to link the relevant error handler, as docu-
mented in Section 5.13.

You can probe the number of messages in a queue with queue_items_re-

6.10. Sending messages

135

maining.

Documentation for the queue_items_remaining function
int queue_items_remaining(struct MessageQueue * handle,
size_t * items)

Returns the number of items in the queue specȋed by handle via
items.
Returns 0 on success. This has no failure mechanisms, but is intended
to have the same interface as the version that operates on a sealed
queue handle.
Note: This interface is inherently racy. The number of items in the
queue may change in between the return of this function and the
caller acting on the result.

Listing 53 shows how to create amessage queue. This uses the non_block-
ing template function. This and blocking_forever take advantage of the reg-
ularity of CHERIoT APIs (timeouts are always the ̑rst parameter) to pass a
zero-length and unlimited timeout to a single function. The producer thread
in this example is creating the queue and is then doing a futex_wake opera-
tion on the global variable where the queue pointer is stored.

21 // Allocate the queue
22 non_blocking<queue_create>(
23 MALLOC_CAPABILITY, &queue, sizeof(int), 16);
24 // Wake the consumer thread
25 futex_wake(reinterpret_cast<uint32_t *>(&queue), 1);

Lཥၑၣཥ࿏༥ 53. Allocating a message queue for use in a single compartment
[from: examples/producer_consumer/queue.cc]

The corresponding futex_wait call is in the consumer, in Listing 55. This
takes advantage of the fact that the global is initialised to zero and the result-
ing capability after allocation will be non-zero (in both halves, so the choice
to use the ̑rst address is arbitrary here). If the consumer thread runs ̑rst,
the wait call will block then return after the wake call from Listing 53. If the
producer thread runs ̑rst then the wait call will return immediately.

The producer in this simple example then just sends 200 integers, one at
a time, as shown in Listing 54. These will enter the queue until either the

6. Communicating between threads

136

scheduler quantum expires or the queue ̑lls up, then the consumer thread
will run.

29 // Loop, sending some numbers to the other thread.
30 for (int i = 1; i < 200; i++)
31 {
32 Debug::log("Producer sending {} to queue", i);
33 int ret = blocking_forever<queue_send>(queue, &i);
34 // Abort if the queue send errors.
35 Debug::Invariant(ret == 0, "Queue send failed {}", ret);
36 }

Lཥၑၣཥ࿏༥ 54. Sending messages to a message queue.
[from: examples/producer_consumer/queue.cc]

The consumer thread (Listing 55) simply reads each element and prints it.
Once every expected message has been received, the consumer destroys the
queue.

This is a good general pattern. This example detects the end of the queue
because it knows that it will receive 200 messages but a more realistic system
would send an end-of-messagesmarker through the queue. Once this is in the
queue, the producer will no longer use the queue and as soon as the receiver
reads it the consumer is free to deallocate the queue.

47 // Use the queue pointer as a futex. It is initialised to
48 // 0, if the other thread has stored a valid pointer here
49 // then it will not be zero and so futex_wait will return
50 // immediately.
51 futex_wait(reinterpret_cast<uint32_t *>(&queue), 0);
52 Debug::log("Waiting for messages");
53 // Get a message from the queue and print it.
54 int value = 0;
55 while ((value != 199) && (blocking_forever<queue_receive>(
56 queue, &value) == 0))
57 {
58 Debug::log("Read {} from queue", value);
59 }
60 Debug::log("Destroying the queue");
61 queue_destroy(MALLOC_CAPABILITY, queue);

Lཥၑၣཥ࿏༥ 55. Receiving messages from a message queue.
[from: examples/producer_consumer/queue.cc]

This example prints the number of cycles that elapsed at the end. Try ad-
justing the queue size and the priorities of the two threads to see how this
a̛ects performance.

6.10. Sending messages

137

6.11. Sending messages between compartments
If you are passing messages between compartments, you should use the ver-
sions of these functions with the _sealed su̕x. These are provided by the
compartmentalised version and ensure that the queue's internal state is not
mutated by its callers.

The queue_create_sealed function creates a queue in exactly the same
way as queue_create (and has the same argument structure) but returns a
sealed pointer to it. Nowhere outside of the queue compartment can unseal
this so the queue is protected against tampering. The queuemay still contain
malicious or malformed data, but you have guarantees that messages will ar-
rive in order and that they won't be tampered with in ̓ight.

Documentation for the queue_create_sealed function
int queue_create_sealed(Timeout * timeout,
AllocatorCapability heapCapability, struct MessageQueue *
__sealed_capability * outQueue, size_t elementSize, size_t
elementCount)

Allocate a newmessage queue that is managed by the message queue
compartment. The resulting queue handle (returned in outQueue) is
a sealed capability to a queue that can be used for both sending and
receiving.

Listing 56 shows how to allocate a queue for sharing between compart-
ments. This is equivalent to the example from Listing 53, but with the pro-
ducer and consumer separated into di̛erent compartments. The queue is
protected from both by being managed in the queue compartment, which is
provided by the RTOS. In the original, the queue was shared between the pro-
ducer and consumer by placing it in a (compartment-local) global variable.
In this version, it needs to be passed to the consumer explicitly by calling the
set_queue function that the consumer exposes.

Listing 57 shows the implementation of this function. This explicitly
checks that the queue is valid before keeping it by calling queue_items_re-
maining_sealed. This function returns zero on success or an error code on
failure and needs to unseal the queue to succeed, so this works to check that
the sealed pointer really is a queue handle. After it has checked that this is

6. Communicating between threads

138

21 // Allocate the queue
22 CHERI_SEALED(MessageQueue *) queue;
23 non_blocking<queue_create_sealed>(
24 MALLOC_CAPABILITY, &queue, sizeof(int), 16);
25 // Pass the queue handle to the consumer.
26 set_queue(queue);

Lཥၑၣཥ࿏༥ 56. Allocating a message queue for use in a between compartments.
[from: examples/producer_consumer_compartment/producer.cc]

a valid queue handle, this function looks much like the code that woke the
other thread in the single-compartment case in Listing 53.

24 // Check that this is a valid queue
25 size_t items;
26 if (queue_items_remaining_sealed(newQueue, &items) != 0)
27 {
28 return;
29 }
30 // Set it in the global and allow the thread to start.
31 queue = newQueue;
32 Debug::log("Queue set to {}", queue);
33 futex_wake(reinterpret_cast<uint32_t *>(&queue), 1);

Lཥၑၣཥ࿏༥ 57. Receiving a queue endpoint in the consumer compartment.
[from: examples/producer_consumer_compartment/consumer.cc]

This queue can be destroyed by calling queue_destroy_sealed. You can-
not free an object pointed to by a sealed capability unless you also have the
capability that authorises unsealing. This means that, unlike the unsealed
version, you cannot destroy a queue created with queue_create_sealed ex-
cept by calling the correct destroy function.

Similarly, you cannot free a sealed object unless you hold the allocation
capability that allocated it. In the example, the queue is allocated from the
producer's allocation capability. This means that the consumer cannot free
it. Instead, the producer waits for the consumer to ̑nish draining the queue
and then frees it, in Listing 58.

The corresponding send and receive functions are identical to their library
counterparts, but take sealed queue handles. Sometimes, it's useful to be able
to give one compartment the ability to write to a queue and another the abil-
ity to read. The queue compartment provides two APIs that let you allocate a
handle that is authorised for only sending or receiving, queue_receive_han-
dle_create_sealed and queue_send_handle_create_sealed.

6.11. Sending messages between compartments

139

Documentation for the queue_destroy_sealed function
int queue_destroy_sealed(Timeout * timeout,
AllocatorCapability heapCapability, struct MessageQueue *
__sealed_capability queueHandle)

Destroy a queue handle. If this is called on a restricted endpoint (re-
turned either from queue_receive_handle_create_sealed or from
queue_send_handle_create_sealed), this frees only the handle. If
called with the queue handle returned from queue_create_sealed,
this will destroy the queue.

41 size_t itemsRemaining;
42 while ((queue_items_remaining_sealed(
43 queue, &itemsRemaining) == 0) &&
44 (itemsRemaining > 0))
45 {
46 Timeout t{1};
47 thread_sleep(&t);
48 }
49 int ret = blocking_forever<queue_destroy_sealed>(
50 MALLOC_CAPABILITY, queue);
51 Debug::Assert(
52 ret == 0, "Failed to destroy queue: {}", ret);
53 Debug::log("Destroyed queue");

Lཥၑၣཥ࿏༥ 58. Freeing a message queue once it is empty.
[from: examples/producer_consumer_compartment/producer.cc]

With these APIs, you can have an initial setup compartment that creates
a queue and then hands the send and receive endpoints to two others. This
provides mutual distrust because neither compartment that holds a send or
receive handle can free the queue, nor can they be used for the opposite oper-
ation, and the queue compartment protects the integrity of the queue itself.

In many cases, the trust relationship may be asymmetric. For example, a
compartment may provide a queue that other untrusted compartments can
sendmessages to, but the senders trust the receiving compartment. The APIs
also support this asymmetric use case, where the trusted compartment keeps
the original handle but uses queue_send_handle_create_sealed to create
handles to pass to other compartments.

6. Communicating between threads

140

Documentation for the queue_send_handle_create_sealed func-
tion
int queue_send_handle_create_sealed(struct Timeout *
timeout, AllocatorCapability heapCapability, struct
MessageQueue * __sealed_capability handle, struct
MessageQueue * __sealed_capability * outHandle)

Convert a queue handle returned from queue_create_sealed into
one that can be used only for sending.
Returns 0 on success and writes the resulting restricted handle via
outHandle. Returns -ENOMEM on allocation failure or -EINVAL if the
handle is not valid.

Documentation for the queue_receive_handle_create_sealed
function
int queue_receive_handle_create_sealed(struct Timeout *
timeout, AllocatorCapability heapCapability, struct
MessageQueue * __sealed_capability handle, struct
MessageQueue * __sealed_capability * outHandle)

Convert a queue handle returned from queue_create_sealed into
one that can be used only for receiving.
Returns 0 on success and writes the resulting restricted handle via
outHandle. Returns -ENOMEM on allocation failure or -EINVAL if the
handle is not valid.

Try modifying the example to remove the ability from the consumer to
send messages. This change should not require restructuring the code, only
calling queue_receive_handle_create_sealed. Next, try moving queue cre-
ation to a separate compartment that sets the endpoint in the consumer and
then passes it into the consumer and deallocates it once the producer returns
and the queue is empty. The producer should receive a restricted handle that
can send but not receive. Try modifying both the producer and consumer to
do the operation that they should not be allowed to do and make sure that it
fails.

6.11. Sending messages between compartments

141

6.12. Waiting for multiple events
The multiwaiter API allows waiting for any of a set of independent events. It
is conceptually similar to select, poll, epoll, and kqueue in *NIX operating
systems or WaitForMultipleObjects inWindows. It is designed to bound the
amount of time that the scheduler must spend checking multiwaiters and to
minimise the amount of memory that multiwaiters consume. Memory is al-
located only when a multiwaiter is created, with multiwaiter_create. This
creates a multiwaiter with space for a ̑xed number of events.

Documentation for the multiwaiter_create function
int multiwaiter_create(Timeout * timeout,
AllocatorCapability heapCapability, MultiWaiter * ret,
size_t maxItems)

Create a multiwaiter object. This is a stateful object that can wait on
at most maxItems event sources.

Listing 59 shows how to create a multiwaiter that can wait for two fu-
texes. This example generalises the producer-consumer example from earlier
in this chapter to have two producer threads, each of which writes to a differ-
entmessage queue, but a single consumer that reads both. The consumer will
use this multiwaiter to block until one or both queues has a message avail-
able.

84 // Create the multiwaiter object in the scheduler with
85 // space for two event sources.
86 MultiWaiter multiwaiter;
87 blocking_forever<multiwaiter_create>(
88 MALLOC_CAPABILITY, &multiwaiter, 2);

Lཥၑၣཥ࿏༥ 59. Creating a multiwaiter object. [from: examples/multiwaiter/queue.cc]

Each multiwaiter_wait call is a one-shot operation. The call is passed a
set of things to wait for and the associated condition via the events array
and returns the waited status via the same array. This is typically an on-stack
array.

The multiwaiter can natively wait only for futex notȋcations but higher-
levelmechanisms are built out of futexes. For example, if youwish towait for a

6. Communicating between threads

142

Documentation for the multiwaiter_wait function
int multiwaiter_wait(Timeout * timeout, MultiWaiter waiter,
struct EventWaiterSource * events, size_t newEventsCount)

Wait for events. The ̑rst argument is the multiwaiter to wait on.
New events can optionally be added by providing an array of new-
EventsCount elements as the newEvents argument.
Return values:

• On success, this function returns 0.
• If the arguments are invalid, this function returns -EINVAL.
• If the timeout is reached without any events being triggered
then this returns -ETIMEOUT.

message queue (see Section 6.10) to be ready to send, you can call multiwait-
er_queue_receive_init to initialise a multiwaiter event with the queue's
receive counter and expected value. This event will then ̑re if the queue be-
comes non-full. The normal caveats about race conditions apply: the queue
may become full again if another thread sends messages in between your re-
ceiving the notȋcation and sending a message. For example, consider the
following sequence:

1. You try to send buy cannot because the queue is full.
2. You use the multiwaiter to wait for the queue to become non-full.
3. Another thread receives a message from the queue, which makes the

queue non-full.
4. Your thread becomes runnable because the futexwake triggered your

futex wait to return but does not yet run.
5. Another thread sends amessage to the queue,whichmakes the queue

full again.
6. You try to send but the send fails because the queue is now full.

Listing 60 initialises two events, one for each of the queues, and then calls
multiwaiter_wait. This will return immediately if an equivalent futex_wait
call on either futex would have done so, or will block until one of the queues
becomes non-empty. The loop then tries to handle one event from each mes-
sage queue that has events available.

6.12. Waiting for multiple events

143

95 // Initialise the events for this wait.
96 std::array<EventWaiterSource, queues.size()> events;
97 multiwaiter_queue_receive_init(&events[0], queues[0]);
98 multiwaiter_queue_receive_init(&events[1], queues[1]);
99 // Block until at least one event fires.
100 int ret = blocking_forever<multiwaiter_wait>(
101 multiwaiter, events.data(), events.size());
102 Debug::Assert(ret == 0, "Multiwaiter failed: {}", ret);
103 // For each message queue, fetch a message if the
104 // multiwaiter indicated that one was available.
105 for (int i = 0; i < queues.size(); i++)
106 {
107 if (events[i].value)
108 {
109 ret = non_blocking<queue_receive>(queues[i],
110 &values[i]);
111 Debug::Assert(
112 ret == 0,
113 "Failed to receive message from queue: {}",
114 ret);
115 Debug::log("Received {} on queue {}", values[i], i);
116 }
117 }

Lཥၑၣཥ࿏༥ 60. Using a multiwaiter to wait for either of two queues.
[from: examples/multiwaiter/queue.cc]

Try modifying this to avoid the multiwaiter_wait call if either of the
queues is already non-empty. You can do this either by repeating the non-
blocking receive and using the multiwaiter only if it fails, or by checking
whether the value ̑eld of the event source has been initialised to -1 by mul-
tiwaiter_queue_receive_init. Make sure that you don't starve one of the
producers by biasing your consumption towards one of the queues.

Remember that the CHERIoT RTOS scheduler also exposes interrupts as
futexes. This means that the multiwaiter API can wait for multiple hardware
and software events in a single call.

6. Communicating between threads

144

Chapter 7.
Memory management in CHERIoT RTOS
It is common for embedded systems to avoid heap allocation entirely and pre-
allocate all memory that they will need. This means that the total amount of
memory that a system requires is the sum of the peak memory usage of all
components.

The CHERIoT platform is designed to enable safe reuse of memory. The
shared heap allows memory to be dynamically allocated for individual uses
and then reused. This means that the total memory requirement for a system
becomes the peak combined usage of all components. If two components use
a lot of memory at di̛erent times, they can safely share the same memory.

This chapter covers how to allocate and manage memory. CHERIoT pro-
vides spatial andmemory safety so there is a complementary aspect to mem-
ory allocation: What do you do when you manage memory incorrectly and
CHERIoT catches the error? Error handling from CHERI exceptions is covered
in detail in Section 5.11.

7.1. Understanding allocation capabilities
The memory allocator uses a capability model. Every caller of a memory al-
location or deallocation function must present a capability that authorises
allocation. This is a sealed capability to an AllocatorCapabilityState struc-
ture. Sealed capabilities were introduced in Section 1.6.

This uses the static sealing mechanism described in Section 5.6. There is
no limit to the number of allocator capabilities that a compartment can hold.
Each allocation capability holds an independent quota.

There is no requirement that the sum of all allocation quotas is less than
the total available heap space. You can over-commitmemory if you know that
it will not all be needed at the same time. The quota mechanism gives you a
way of limiting the total memory consumption of individual compartments
(or groups of compartments) and of cleaning up after failure.

7.2. Creating custom allocation capabilities
A compartment may hold di̛erent allocation capabilities for di̛erent pur-
poses. The heap_free_all function allows you to free all memory allocated
with a specȋed capability, so using multiple allocation quotas can be useful
for error recovery.

145

You can forward-declare an allocator capability with the DECLARE_ALLO-
CATOR_CAPABILITY macro. This takes a single argument: the name of the al-
locator capability. You can then dȇne the allocator capability with the DE-
FINE_ALLOCATOR_CAPABILITY macro, which takes the name and the quota
size as arguments. These can be combinedwith the DECLARE_AND_DEFINE_AL-
LOCATOR_CAPABILITYmacro.

⚠

The allocator capabilities are exposed as COMDATs in C++.
This allows them to be dȇned in a header and used in multi-
ple translation units. C does not expose a similar mechanism, so
youmust use the separate declare and dȇnemacros in C if your
compartment has multiple compilation units that wish to share
an allocator capability and dȇne the capability in a single com-
pilation unit.

In future versions of CHERIoT RTOS, allocator capabilities are likely to gain
additional restrictions (for example, separating the ability to allocate from
the ability to claim).

7.3. Recalling the memory safety guarantees
Every pointer to a newallocation provided by thememory allocator is derived
from a capability to a large heap region and bounded. The capability mono-
tonicity guarantees in a CHERI system ensure that a caller cannot expand the
bounds of the returned pointer.

The CHERIoT platform provides two additional features for temporal
safety. These both depend on a revocation bitmap, a shadow memory space
that stores one bit per eight bytes of heap memory. When an object is freed,
the allocator paints the bits associated with it.

The load ̑lter is part of a CHERIoT core. When a capability is loaded from
memory into a register, the load ̑lter checks the revocation bit associated
with the base of the capability and clears the tag bit if the capability points to
freed memory (̑ltering out dangling pointers). The load ̑lter ensures that
you cannot load, and therefore cannot try to use, any dangling pointers. This
gives deterministic use-after-free protection; any attempt to use a pointer to
a deallocated object will trap. The object is then placed in quarantine.

The revoker periodically scans all memory and invalidates any pointers
whose base address points to a deallocated object. The monotonicity of
bounds ensures that the base of a capability always points either somewhere

7. Memory management in CHERIoT RTOS

146

within the allocation or, if the length is zero, to the word immediately after
it.

The allocator marks the metadata between allocations as
freed. This means that a zero-length capability to the end of an
object is likely to be untagged.

The load ̑lter ensures that no new pointers to deallocated objects can
appear in memory so the revocation sweep can proceed asynchronously. Any
object that is in quarantine at the start of a sweep is safe to remove from
quarantine at the end.

This combination of features allows the allocator to provide complete spa-
tial and temporal safety for heap objects.

7.4. Allocating with an explicit capability

Documentation for the heap_free function
int heap_free(AllocatorCapability heapCapability, void *
ptr)

Free a heap allocation.
Returns 0 on success, -EINVAL if ptr is not a valid pointer to the start
of a live heap allocation, or -ENOTENOUGHSTACK if the stack size is in-
suf̑ciently large to safely run the function.

Documentation for the heap_free_all function
ssize_t heap_free_all(AllocatorCapability heapCapability)

Free all allocations owned by this capability.
Returns the number of bytes freed, -EPERM if this is not a valid heap
capability, or -ENOTENOUGHSTACK if the stack size is insu̕ciently large
to safely run the function.

7.4. Allocating with an explicit capability

147

Documentation for the heap_allocate function
void * heap_allocate(Timeout * timeout, AllocatorCapability
heapCapability, size_t size, uint32_t flags)

Non-standard allocation API. Allocates size bytes.
The heapCapability quota object must have remaining capacity suf-
̑cient for the requested size as well as any padding required by
the CHERIoT capability encoding (see its ISA document for details)
and any additional space required by the allocator's internal layout,
whichmay be up to CHERIOTHeapMinChunkSize bytes. Not all of these
padding bytes may be available for use via the returned capability.
Blocking behaviour is controlled by the flags and the timeoutparam-
eters. Specȋcally, the flags parameter dȇnes on which conditions
to wait, and the timeout parameter how long to wait.
The non-blockingmode (AllocateWaitNone, or timeoutwith no time
remaining) will return a successful allocation if one can be created
immediately, or nullptr otherwise.
The blocking modes may return nullptr if the condition to wait is
not ful̑lled, if the timeout has expired, or if the allocation cannot be
satis̑ed under any circumstances (for example if size is larger than
the total heap size).
This means that calling this with AllocateWaitAny and Unlimited-
Timeoutwill only ever return nullptr if the allocation cannot be sat-
is̑ed under any circumstances.
In both blocking and non-blocking cases, -ENOTENOUGHSTACK may be
returned if the stack is insu̕ciently large to safely run the function.
Thismeans that the return value of heap_allocate should be checked
for the validity of the tag bit andnot simply compared against nullptr.
Memory returned from this interface is guaranteed to be zeroed.

The heap_allocate and heap_free functions take a capability, as de-
scribed above, that authorises allocation and deallocation. When an object
is allocated with an explicit capability, it may be freed only by presenting
the same capability. This means that if you pass a heap-allocated bưer to

7. Memory management in CHERIoT RTOS

148

another compartment, that compartment cannot free it unless you also pass
the authorising capability.

The allocation uses a timeout because the allocation API is
able to block if insu̕cient memory is available. In contrast the
deallocation API will always make progress. The allocator uses
a priority-inheriting lock, which is dropped while blocking. If a
high-priority thread freesmemorywhile a lower-priority thread
owns the lock then the lower-priority thread will wake up, com-
plete its allocation or deallocation, release the lock, and allow
the higher-priority thread to resume.

If you need to clean up all memory allocated by a particular capability,
heap_free_all will walk the heap and deallocate everything owned by that
capability. This is useful when a compartment has crashed, to reclaim all of
its heap memory.

7.5. Using C/C++ default allocators
If you are porting existing C/C++ code then it is likely that it uses malloc /
free or the C++ new / delete operators. These are implemented as wrappers
around heap_allocate and heap_free that pass MALLOC_CAPABILITY as the
authorising capability. You can also pass this capability explicitly to allocate
things from the same quota as the standard allocation routines.

MALLOC_CAPABILITY is amacro referring to the default alloca-
tion capability in the current compartment. It refers to a di̛erent
capability in every compartment.

You can control the amount of memory provided by this capability by
dȇning the MALLOC_QUOTA for your compartment. If a compartment is not
supposed to allocate memory on its own behalf, you can dȇne CHERI-
OT_NO_AMBIENT_MALLOC. This will disable C's malloc and free and C++'s global
new and delete operators. Dȇning CHERIOT_NO_NEW_DELETE will disable the
global C++ operator new and delete, but leave malloc and free available.

Dȇning these does not prevent memory allocation; you can still dȇne
non-default allocator capabilities and use them directly, but it prevents acci-
dental allocation.

7.5. Using C/C++ default allocators

149

7.6. Dȇning custom allocation capabilities for malloc and
free

If you simply wish to change the quota that is available to malloc and free
then you can dȇne MALLOC_QUOTAwhen compiling your compartment. If you
require more control, such as controlling the compilation unit that contains
the dȇnition of the allocator capability, then you can dȇne CHERIOT_CUS-
TOM_DEFAULT_MALLOC_CAPABILITY. This macro will cause stdlib.h to pro-
vide a forward declaration of the default allocator capability, but not to dȇne
it. You must dȇne it as described in Section 7.2.

This is most useful for C compartments with multiple compilation units.
These will need to dȇne the malloc capability in a single compilation unit.

This limitationwill be removed in a future toolchain iteration.

7.7. Allocating on behalf of a caller
Sometimes a compartment needs to be able to allocate memory but that
memory is not logically owned by the compartment. This pattern appears
even in the core of the RTOS. The compartment that provides message
queues, for example, allocates memory on behalf of a caller. It does not hold
the right to allocate memory on its own behalf. It does this by taking an allo-
cator capability as an argument and forwarding it to the allocator.

Often, if a compartment is allocating on behalf of a caller, it needs to en-
sure that the caller doesn't tamper with the object. The token APIs provide a
lightweight mechanism for doing this.

Documentation for the token_obj_destroy function
int token_obj_destroy(AllocatorCapability heapCapability,
SKey , void * __sealed_capability)

Destroy the object given its key, freeing memory.
The key must have the permit-unseal permission.
Returns 0 on success. -EINVAL if key or obj are not valid, or they don't
match, or if obj has already been destroyed.

7. Memory management in CHERIoT RTOS

150

Documentation for the token_obj_unseal function
void * token_obj_unseal(SKey , void * __sealed_capability)

Unseal the object given the key.
The key may be either a static or dynamic key (i.e. one created with
the STATIC_SEALING_TYPEmacro or with token_key_new) and the ob-
ject may be either allocated dynamically (via the token APIs) or stat-
ically (via the DEFINE_STATIC_SEALED_VALUEmacro).
Returns the unsealed object if the key and object are valid and of the
correct type, null otherwise.
This function is equivalent to calling both token_obj_unseal_static
and token_obj_unseal_dynamic and returning the result of the ̑rst
one that succeeds, or null if both fail.

Documentation for the token_sealed_unsealed_alloc function
void * __sealed_capability
token_sealed_unsealed_alloc(Timeout * timeout,
AllocatorCapability heapCapability, SKey key, size_t sz,
void * * unsealed)

Allocate a new object with size sz.
An unsealed pointer to the newly allocated object is returned in *un-
sealed, the sealed pointer is returned as the return value. An invalid
unsealed pointer does not constitute an error; the caller will still be
given the sealed return value, assuming allocationwas otherwise suc-
cessful.
The key parametermust have both the permit-seal and permit-unseal
permissions.
On error, this returns null.

When the delegated compartment calls token_sealed_unsealed_alloc,
you must provide two capabilities:

7.7. Allocating on behalf of a caller

151

• An allocator capability.
• A permit-seal sealing capability.

The ̑rst of these authorises memory allocation, the second authorises seal-
ing. The CHERIoT ISA includes only three bits of object type space in the ca-
pability encoding so the allocator provides a virtualised sealing mechanism.
This allocates an object with a small header containing the sealing type and
returns a sealed capability to the entire allocation and an unsealed capability
to all except the header.

The unsealed capability can be used just like any other pointer to heap
memory. The sealed capability can be used with token_obj_unseal to re-
trieve a copy of the unsealed capability. The token_obj_unseal function re-
quires a permit-unseal capability whose value matches the permit-seal capa-
bility passed to token_sealed_unsealed_alloc.

The virtualised sealing mechanism must be able to derive an
accurate capability for the object excluding the header. This is
trivial for objects up to a little under 4 KiB. After that, the alloca-
tor will create some padding. The padding is placed at the start
of the allocation, so you can see how much is there by querying
the base and address of the returned (sealed) capability.

An object allocated in this way can be deallocated only by presenting both
the allocator capability and the sealing capability that match the original
allocation. This is very convenient for compartments that expose services
because the memory cannot go away while they are using it and can be re-
claimed only when the same caller (or something acting on its behalf) autho-
rises the deallocation.

7.8. Ensuring that heap objects are not deallocated
If malicious caller passes a compartment a bưer and then frees it, the callee
can be induced to trap. There are some situations where this is acceptable. In
some cases, compartments exist in a hierarchical trust relationship and it's
̑ne for a more-trusted compartment to be able to crash a less-trusted one.
In other cases, the compartment is fault tolerant. For example, the scheduler
ensures that its data structures are in a consistent state before performing
any operations on user-provided data that may trap. As such, it can unwind
to the caller and, at worst, leak memory owned by the caller.

7. Memory management in CHERIoT RTOS

152

In situations involvingmutual distrust, the callee needs to claim the mem-
ory to prevent its deallocation. The heap_claim function allows you to place
a claim on an object. The claim is dropped by calling heap_free.

While you have a claim on an object, that object counts towards your
quota. You can claim the same object multiple times. Each time adds a new
claim to the object but (if it is already claimed with that quota) does not con-
sume quota.

You can pass a capability with bounds that do not cover an
entire object to heap_claim but your claim will cover the entire
object because you cannot free part of an object.

Documentation for the heap_claim function
ssize_t heap_claim(AllocatorCapability heapCapability, void
* pointer)

Add a claim to an allocation. The object will be counted against the
quota provided by the ̑rst argument until a corresponding call to
heap_free. Note that this can be used with interior pointers.
This will return the size of the allocation claimed on success (which
may be larger than the size requested in the original heap_allocate
call; see its documentation formore information), 0 on error (if heap-
Capability or pointer is not valid, etc.), or -ENOTENOUGHSTACK if the
stack is insu̕ciently large to run the function.

If you need to ensure that an allocation remains valid for a brief, scoped
period then heap_claim_ephemeralmay bemore useful. This function places
an ephemeral claim on one or two objects.

Every thread has two hazard slots that can hold pointers. The heap_-
claim_ephemeral function manages these two slots. These are cleared on
every cross-compartment call and can be cleared explicitly by passing NULL
to heap_claim_ephemeral.

If a pointer passed to heap_free is present in the allocator, the allocator
will defer freeing the object. Writing to the hazard slots is very fast. Unlike
heap_claim, this does not require a cross-compartment call.

7.8. Ensuring that heap objects are not deallocated

153

Documentation for the heap_claim_ephemeral function
int heap_claim_ephemeral(Timeout * timeout, const void *
ptr, const void * ptr2)

Interface to the ephemeral claims mechanism. This claims two point-
ers using the hazard-pointer-inspired lightweight claimsmechanism.
If this function returns zero then the heap pointers are guaranteed
not to become invalid until either the next cross-compartment call or
the next call to this function.
A null pointer can be used as a not-present value. This function will
treat operations on null pointers as unconditionally successful. It re-
turns -ETIMEDOUT if it failed to claim before the timeout expired, or
-EINVAL if one or more of the arguments is neither null nor a valid
pointer at the end.
In the case of failure, neither pointer will have been claimed.
This function is provided by the compartment_helpers library, which
must be linked for it to be available.

⚠
Any claim applied with heap_claim_ephemeral is lost on any

cross-compartment call. This includes any blocking operation,
which will invoke the scheduler. In general, do not use heap_-
claim_ephemeral for anything other than a local read or write
of a single object.

The heap_claim_ephemeral API is intended for very brief accesses to ob-
jects. You can claim two pointers to support the common pattern of memcpy
between two caller-provided (i.e. untrusted) bưers. You can claim both and
then copy between them.

7. Memory management in CHERIoT RTOS

154

Chapter 8.
Features for debug builds
CHERIoT provides a small set of APIs for use in debug builds in debug.hh.
These include:

• Rich log messages
• Assertions with error messages
• Invariants that are checked in release builds but provide debugging
help only in release builds

The message-producing aspects of these APIs use direct access to the UART.
This can cause the messages to be interleaved but ensures that they are gen-
erated even if part of the system has crashed or deadlocked.

Access to the UART will show up in the linker report. The implementation
of the logging functions is in the debug library. You should typically add an
audit check that ensures this compartment is not present in release builds.

8.1. Enabling per-component debugging
Debug builds can often be signȋcantly larger than release builds. They con-
tain more code and potentially large strings for debug messages. CHERIoT
RTOS is designed to allow debugging features to be controlled on a per-com-
partment basis to helpmitigate this. You can see this in the core components.
If you run xmake config --help in a ̑rmware build, you will see this at the
end of the output:
--debug-allocator=DEBUG-ALLOCATOR Specify verbose output level
(none|information|warning|error|critical) in the allocator
(default: none)
--debug-token_library=[y|n] Enable verbose output and assertions in
the token_library
--debug-loader=[y|n] Enable verbose output and assertions in
the loader
--debug-scheduler=[y|n] Enable verbose output and assertions in
the scheduler

Each of the core components allows extra debugging modes to be enabled
independently, rather than via a global debug-mode switch. Note that most
of these are simply binary choices but the allocator allows selecting a level
for debugging. We'll return to that di̛erence later.

Adding something similar requires two changes in your xmake.lua ̑le.
The ̑rst line, at top-level scope, declares the option, as shown in Listing 61.

155

28 debugOption("debug_compartment")
29 -- debug_option#end
30
31 -- use_debug#begin
32 compartment("debug_compartment")
33 add_rules("cheriot.component-debug")
34 add_deps("unwind_error_handler")
35 add_files("example.cc", "example.c")
36 -- use_debug#end
37 -- Explicitly setting the debug option name is not necessary
38 -- here because it matches the compartment name, but if we
39 -- did it explicitly then it would look like this:
40 -- set_debug_option#begin
41 on_load(function (target)
42 target:set('cheriot.debug-name', "debug_compartment")
43 end)

Lཥၑၣཥ࿏༥ 61. Build system code for dȇning a debug option.
[from: examples/debug_helpers/xmake.lua]

With this, you will get a message in xmake config --help like the one
above, but it won't actually do anything. You can test that this actually works
by trying the command:
$ xmake config --help
...

--debug-debug_compartment=[y|n] Enable
verbose output and assertions in the debug_compartment
...

You must also enable debugging support in your compartment or library
by adding the corresponding rule in the description of your compartment or
library. This is shown in Listing 62, which adds a debug option to an example
compartment.

19 compartment("debug_compartment")
20 add_rules("cheriot.component-debug")
21 add_deps("unwind_error_handler")
22 add_files("example.cc", "example.c")

Lཥၑၣཥ࿏༥ 62. Build system code for using a debug option.
[from: examples/debug_helpers/xmake.lua]

By default, this assumes that the debugOption that you've provided has
the same name as the target. Sometimes, it's useful to have a single debug
option that enables or disables debugging for multiple components. You can
set the cheriot.debug-name target property in your component to the name
that you expect in the on_load hook, as shown in Listing 63.

8. Features for debug builds

156

28 on_load(function (target)
29 target:set('cheriot.debug-name', "debug_compartment")
30 end)

Lཥၑၣཥ࿏༥ 63. Build system code for providing the debug option name explicitly.
[from: examples/debug_helpers/xmake.lua]

Now, the compartment will be compiled with a macro that starts with DE-
BUG_ and ends with the name of the debug option in all capitals. In the ̑rst
example above, this would be DEBUG_DEBUG_COMPARTMENT.

This can then be used with the ConditionalDebug class from debug.hh.
This is typically used with a using directive as shown in Listing 64 to connect
the debug option.

81 using Debug = ConditionalDebug<DEBUG_DEBUG_COMPARTMENT,
82 "Debug compartment">;

Lཥၑၣཥ࿏༥ 64. Connecting the debug option to a debug type in code
[from: examples/debug_helpers/example.cc]

The ̑rst template parameter can be a boolean value that indicates
whether this component is being debugged. It can also be a threshold, spec-
ȋed as a DebugLevel enumeration value. Recall that the allocator's output
allowed choosing di̛erent debugging levels. The allocator uses warnings for
API misuse and information for internal consistency checks. If you opt into
warnings then you will get debug messages if you use the allocator incor-
rectly. If you use debugLevelOption instead of debugOption, the build system
will provide the level, rather than a simple binary option.

The second is a free-form string literal thatwill be prepended (inmagenta)
to any debug line. There are two other template arguments that you can use
if you are using debug levels. In the simple case, the boolean parameter con-
trols whether log messages are shown, whether assertions are checked, and
whether invariants report a verbose message on failure. By default, the latter
two will happen if the threshold is set to warning or lower but the last two
template parameters allow users to override this default.

The rest of this chapter will assume that the Debug type has been dȇned
in this way.

8.2. Generating log messages
Printing logmessages is the simplest use of the debugAPIs. The Debug::log()
function takes a format string and then a set of arguments. This is similar to

8.2. Generating log messages

157

printf or std::format, inserting the arguments into the output, replacing
placeholders. The syntax here is modelled on std::format, but does not cur-
rently accept any format modȋers. The {} syntax for placeholders makes it
possible to add modȋers in the future. This class is designed to avoid need-
ing heap allocation or large amounts of stack space and is intentionally less
̓exible than a general-purpose formatting library.

Unsigned integers are printed as hex. Signed integers are printed as dec-
imal. Floating point numbers are not supported. Individual characters are
printed as characters. Strings (either const char* or std::string_view) are
printed as strings.

Enumerated types are converted to strings using the Magic Enum library
and printed with their numeric value in brackets. This has some limitations
(in particular, by default, it does not work with very large enumeration val-
ues). It also requires capability relocations because it generates tables of
strings. If you compile a compartment with CHERIOT_AVOID_CAPRELOCS de-
̑ned then enumerations will be printed as numeric values.

Two other types have rich formatted output. PermissionSet objects (see
Section 4.10) are printed using the characters from the tables in Section 1.4.
Capabilities (either as raw pointers or instances of the CHERI::Capability

class) are printed in full detail.
Listing 65 shows an example of most of these. Note the last two log lines,

which print enumeration and capability values.
88 Debug::log("Hello world!");
89 Debug::log("Here is a C string {}, A C++ string view {}, "
90 "an int {}, and an unsigned 64-bit value {}",
91 "hello from a C string",
92 std::string_view{"hello from a C++ string"},
93 52,
94 0xabcdULL);
95 auto enumValue = NetworkAddress::AddressKindIPv4;
96 Debug::log("Here is an enum value: {}", enumValue);
97 int x;
98 Debug::log("Here is a pointer: {}", &x);

Lཥၑၣཥ࿏༥ 65. Printing log messages with the debug log API.
[from: examples/debug_helpers/example.cc]

When you run this, the start of the output should look like this:

8. Features for debug builds

158

Debug compartment: Hello world!
Debug compartment: Here is a C string hello from a C string, A C++
string view hello from a C++ string, an int 52, and an unsigned 64-
bit value 0xabcd
Debug compartment: Here is an enum value: AddressKindIPv4(0x2)
Debug compartment: Here is a pointer: 0x80000ef8 (v:1
0x80000ef8-0x80000efc l:0x4 o:0x0 p: - RWcgml -- ---)

On the penultimate line, both the name and value of the enumeration are
printed. This has some limitations. It will not work for enumerations that
have multiple names for the same values or enumerations with very large
numbers of elements.

The capability (pointer) format starts with the address and then has the
metadata in brackets. The metadata includes the tag (valid) bit, then the
range, then the length, object type, and permissions. The letters for the per-
missions are described in Chapter 1.

The log method takes an optional debug level as a template parameter.
If you are using the variant of ConditionalDebug with a DebugLevel tem-
plate parameter then you disable some log messages based their severity.
Try changing the debugOption to debugLevelOption in the build system and
modifying this example to print some of the log messages only at higher
thresholds. Note that you may need to delete your .xmake and build before
doing this to avoid stale caches of the value as a di̛erent type causing prob-
lems.

8.3. Printing custom types
The standard formatting machinery in C++ can result in large code. The
CHERIoT debug logging mechanism is intended to be small and intention-
ally omits features. It does provide a mechanism for pretty-printing custom
types.

Most of the printing is done in the debug library, which contains code for
printing di̛erent primitive types, including capabilities. The function from
this library takes an array of arguments for printing, where each is identȋed
by two uintptr_t variables. One contains the value, the other the discrimi-
nator. If the discriminator is untagged, it is treated as an enumeration for the
built-in handlers. If it is tagged, it is a pointer to a function that knows how
to pretty-print the value. If you want to print a custom type, you ̑rst need to
dȇne a function that will print it. Listing 66 contains an example of such a
function.

This is printing a network address, which is a discriminated union of a 32-
bit IPv4 address or a 128-bit IPv6 address.

8.3. Printing custom types

159

34 void debug_network_address(uintptr_t value,
35 DebugWriter &writer)
36 {
37 auto *address = reinterpret_cast<NetworkAddress *>(value);
38 if (address->kind == NetworkAddress::AddressKindIPv6)
39 {
40 for (int i = 0; i < 14; i += 2)
41 {
42 writer.write_hex_byte(address->ipv6[i]);
43 writer.write_hex_byte(address->ipv6[i + 1]);
44 writer.write(':');
45 }
46 writer.write_hex_byte(address->ipv6[14]);
47 writer.write_hex_byte(address->ipv6[15]);
48 }
49 else if (address->kind == NetworkAddress::AddressKindIPv4)
50 {
51 writer.write_decimal((address->ipv4 >> 0) & 0xff);
52 writer.write('.');
53 writer.write_decimal((address->ipv4 >> 8) & 0xff);
54 writer.write('.');
55 writer.write_decimal((address->ipv4 >> 16) & 0xff);
56 writer.write('.');
57 writer.write_decimal((address->ipv4 >> 24) & 0xff);
58 }
59 else
60 {
61 writer.write("<invalid address>");
62 }
63 };

Lཥၑၣཥ࿏༥ 66. Dȇning a print function for a custom type.
[from: examples/debug_helpers/example.cc]

This takes two arguments. The ̑rst is the value to print, the second is a
reference to an object that providesmethods for printing individualmethods.
In this example, the value will be a pointer to the real object and must be
explicitly cast. Remember that, although this is not type safe, it is memory
safe on a CHERIoT system. If the value is not a pointer of the correct size or
larger, you will get traps.

The other argument is the writer, which is passed as an abstract class (in-
terface) and provides callbacks into the debug library. This has various over-
loads of a writemethod that will print primitive values as if theywere passed
as arguments to the log function, as well as some with explicit control over
formatting.

8. Features for debug builds

160

This function also needs to be accompanied by an adaptor, as shown in
Listing 67, that constructs the pair of uintptr_ts that will be passed into the
library. This is simply casting the pointer to a uintptr_t for the value and
providing the helper function (also cast to uintptr_t) as the type value.

67 template<>
68 struct DebugFormatArgumentAdaptor<NetworkAddress>
69 {
70 static DebugFormatArgument
71 construct(NetworkAddress &address)
72 {
73 return {
74 reinterpret_cast<uintptr_t>(&address),
75 reinterpret_cast<uintptr_t>(debug_network_address)};
76 }
77 };

Lཥၑၣཥ࿏༥ 67. Dȇning an adaptor for a custom type.
[from: examples/debug_helpers/example.cc]

With those in scope, you can now print network addresses using the same
APIs. Listing 68 shows printing an IPv4 and IPv6 address using this API.

102 NetworkAddress addr;
103 addr.ipv4 = 0x0100007f;
104 addr.kind = NetworkAddress::AddressKindIPv4;
105 Debug::log("There's no place like {}", addr);
106 memset(addr.ipv6, 0, sizeof(addr.ipv6));
107 addr.ipv6[15] = 1;
108 addr.kind = NetworkAddress::AddressKindIPv6;
109 Debug::log("There's no place like {}", addr);

Lཥၑၣཥ࿏༥ 68. Printing a custom type with the debug APIs.
[from: examples/debug_helpers/example.cc]

This should print:
Debug compartment: There's no place like 127.0.0.1
Debug compartment: There's no place like 00:00:00:00:00:00:00:01

The second line isn't quite perfect IPv6 output (it should be simply :1), but
it's good enough to understand what's happening.

8.4. Asserting invariants
Assertions and invariants use the same formatting infrastructure as the log
message code. The terms are often used interchangeably. In builds with the
debug option enabled, both behave in the same way. They take a condition

8.4. Asserting invariants

161

and a message (including a format string and arguments, as with the logging
APIs). If the condition is false, they will print the message and then execute a
trap instruction.

If debugging is disabled, assertions do nothing. Invariants still perform the
check and trap but do not print the message. Listing 69 shows an example of
an assertion and an invariant. These use the scoped error handlers described
in Section 5.13 to catch the failure. If they trigger a trap, executionwill resume
in the CHERIOT_HANDLER block. This uses printf to print a message indepen-
dent of the debug mode.

113 bool someCondition = false;
114 CHERIOT_DURING
115 {
116 Debug::Assert(someCondition,
117 "Assertion failed, condition is {}",
118 someCondition);
119 }
120 CHERIOT_HANDLER
121 {
122 printf("Assertion triggered error handler\n");
123 }
124 CHERIOT_END_HANDLER
125
126 CHERIOT_DURING
127 {
128 Debug::Invariant(someCondition,
129 "Invariant failed, condition is {}",
130 someCondition);
131 }
132 CHERIOT_HANDLER
133 {
134 printf("Invariant triggered error handler\n");
135 }
136 CHERIOT_END_HANDLER

Lཥၑၣཥ࿏༥ 69. Assertions and invariants with the debugging APIs.
[from: examples/debug_helpers/example.cc]

If you con̑gure this example with the --debug-debug_compartment=y

̓ag, this section will output something like the following:
example.cc:115 Assertion failure in entry
Assertion failed, condition is false
Assertion triggered error handler
example.cc:122 Invariant failure in entry
Invariant failed, condition is false
Invariant triggered error handler

8. Features for debug builds

162

The ̑rst line of each failure is printed by the assertion or invariant itself,
the second is the log message. The next line is the printf. If you build it with
--debug-debug_compartment=n then the only line of output from this section
should be:
Invariant triggered error handler

The invariant is still checked and is triggering a trap, which leads to an
unwind, but no debug APIs are printing messages.

In some cases, you may ̑nd that the expression that calculates the asser-
tion condition is expensive and the compiler does not successfully optimise it
away in release builds. If the checks call functions in other compilation units,
for example, or reads from volatile memory, the compiler cannot remove
them even if the result is unused. To avoid this, you can replace the condi-
tion with a lambda that takes no arguments and returns a bool. The lambda
is never executed in release builds so the compiler will strip it away.

8.5. Using the debug APIs from C
The log APIs are designed to be used from C++ but C11's _Generic keyword
made it possible to expose a subset of the functionality into C as well. C++
templates allow users to provide their own specialisations. This is sadly not
possible in C and so the logging APIs can print only primitive types. Listing
70 shows the C versions of the C++ APIs from this chapter.

8 CHERIOT_DEBUG_LOG("C example",
9 "Printing a number {} and a string {}",
10 42,
11 "hello from C");
12 CHERIOT_DURING
13 {
14 CHERIOT_INVARIANT(
15 false, "Invariant check in C failed: {}", 12);
16 }
17 CHERIOT_HANDLER
18 {
19 printf("Invariant triggered unwind in C\n");
20 }
21 CHERIOT_END_HANDLER

Lཥၑၣཥ࿏༥ 70. Assertions and invariants with the debugging APIs.
[from: examples/debug_helpers/example.c]

Running this will print the following:

8.5. Using the debug APIs from C

163

C example: Printing a number 42 and a string hello from C
example.c:12 Invariant failure in print_from_c
Invariant check in C failed: 12
Invariant triggered unwind in C

In C++, these are enabled conditionally based on a template parameter. In
C, the macros are dȇned in such a way that you can wrap them in your own
macros, which provide the context parameter and may be conditional.

8. Features for debug builds

164

Chapter 9.
Writing a device driver
CHERIoT aims to be small and easy to customize. It does not have a generic
device driver interface but it does have a number of tools thatmake it possible
to write modular device drivers.

9.1. What is a device?
From the perspective of the CPU, a device is something that you communi-
cate with via a memory-mapped I/O (MMIO) interface, which may (option-
ally) generate interrupts. There are several devices that the core parts of the
RTOS interact with:

• TheUART,which is used forwriting debugoutput duringdevelopment.
• The core-local interrupt controller, which is used for managing timer
interrupts.

• The platform interrupt controller, which is used formanaging external
interrupts.

• The revoker, which scans memory for dangling capabilities (pointers)
and invalidates them.

Most embedded systems on chip will include additional devices. These range
from very simple interfaces, such as general-purpose I/O (GPIO) pins that are
mapped to a bit in a register, up to entire wireless network interfaces with
rich sets of functionality.

CHERIoT, like most modern systems, makes heavy use of MMIO. Device
registers are exposed as if they are memory locations. To read from a device
register, you simply execute a load instruction on the CPU. Similarly, to write
to a device register, you execute a store instruction.

This model is very convenient for CHERI systems because CHERI capabili-
ties already allow you to restrict access to ranges of memory. This means that
we don't need to dȇne a newprotectionmodel for device access on CHERIoT.
Capabilities can grant access to MMIO ranges just as they do to real memory.
You can provide a read-only capability to a device range, or even to a single
register.

This abstraction alsoworks at the C level or higher. A device'sMMIO region
is referred to by a volatile pointer to a structure representing the device's
registers. Reading or writing the device's registers then becomes simple ̑eld
access in C (or C++, or some higher-level language).

165

⚠

A read-only capability to a device's MMIO regionmay convey
more rights than you expect. For example, a device register may
be the end of a memory-mapped FIFO, in which case reading it
would remove the front entry. More generally, reads of device
memorymight have side e̛ects. Youwill generally know this per
device, but don't assume that read-only means may-not-a̛ect-
device-state when providing capabilities to device memory.

This abstraction is su̕cient for polling, where you query the device peri-
odically to see if it has anything ready to process. Polling may be su̕cient
for devices with a simple request-response interface. For example, if you send
some plaintext to an AES engine and then read the cyphertext back, you al-
ways know that there's data ready (or about to be data ready in a few cycles).
In contrast, for something like a UART, Ethernet interface, USB controller,
and so on, there will be long periods where the device has no data for you
to process. Querying every such device in a loop would be ine̕cient both in
terms of power and performance, so devices can raise interrupts. We'll discuss
these in more detail in Section 9.5 but, at a high level, they are asynchronous
events that come from a device. When a frame is ready on an Ethernet con-
troller, for example, it will send an interrupt letting the CPU know, so that
some software can handle the incoming frame.

Between MMIO regions and interrupts, you have the building blocks for
interfacing with any CHERIoT device.

9.2. Why do device drivers exist?
Device drivers are software interfaces to devices. In general (not limited to
CHERIoT) they exist for two reasons:
Abstraction

A device driver allows software to be written to interface with a device
class rather than a single device.

Multiplexing
A device driver allows multiple di̛erent software components to ac-
cess the device.

If you want to write a USB protocol stack or a network stack, you need some
generic interface to USB controllers or Ethernet interfaces. This code doesn't
want to have to be specȋc to each device, it wants to have an abstract way of
talking to any device of the correct class via some device abstraction.

9. Writing a device driver

166

Often, the device multiplexing is delegated to a higher-level piece of soft-
ware. For example, a disk interface may provide a generic block device ab-
straction but then give exclusive access to the next layer up in a storage stack.
This may be a volume manager, which presents a set of logical block devices
to other things in a kernel. On top of this, you'd often run a ̑lesystem driver,
which provides a way of naming variable-sized virtual disks ('̑les') and al-
lows di̛erent users and di̛erent programs to store data independently.

The multiplexing and abstraction features may be entangled. Onmost op-
erating systems, the common interface to the network is a socket, not a time
slice in a network device. The TCP/IP stack is responsible for both providing
abstractions (TCP and UDP sockets) and for multiplexing (di̛erent compo-
nents can have di̛erent sockets and treat them as if they had unique access
to a network device).

On a CHERIoT system, the correct structure for any device driver depends
on the trust model. This determines how (or if) you should build multiplexing
on top of abstraction.

For example, if you have a GPIO device that controls some LEDs, you may
simply want to delegate direct access to that device to a compartment that
wants to control them. Alternatively, you may want to provide an interface
that allows individual compartments to have control over a single LED, or al-
lows compartments tomonotonically set any of them but requires a di̛erent
permission for clearing them.

For more complex devices, such as SPI, Ethernet, or USB, you will want a
low-level device driver that provides a generic interface to the device. This
driver will be wrapped in something that provides a richer interface to other
compartments.

In the CHERIoT network stack, described in Chapter 11, the part of the
driver that handles abstraction is wrapped in a compartment that provides
a ̑rewall. The ̑rewall does more than simply expose the send-packet and
receive-packet interfaces of the physical device, it also provides ingress and
egress ̑ltering to improve security.

9.3. Specifying a device's locations
Devices are specȋed in the board description ̑le, which is described in detail
in Chapter 12. The two relevant parts are the devices node, which specȋes
the memory-mapped I/O devices and the interrupts section that describes
how external interrupts should be con̑gured. For example, our initial FPGA
prototyping platform had sections like this describing its Ethernet device:

9.3. Specifying a device's locations

167

"devices" : {
"ethernet" : {

"start" : 0x98000000,
"length": 0x204

},
...

},
"interrupts": [

{
"name": "Ethernet",
"number": 16,
"priority": 3

}
],

The ̑rst part says that the ethernet device's MMIO space is 0x204 bytes
long and starts at address 0x98000000. The second says that interrupt number
16 is used for the ethernet device.

9.4. Accessing the memory-mapped I/O region
The MMIO_CAPABILITYmacro is used to get a pointer to memory-mapped I/O
devices. This takes two arguments. The ̑rst is the C/C++ type of the pointer,
the second is the name from the board con̑guration ̑le. For example, to get
a pointer to thememory-mapped I/O space for the ethernet device above, we
might do something like:
struct EthernetMMIO
{

// Control register layout here:
...

};

__always_inline volatile struct EthernetMMIO *ethernet_device()
{

return MMIO_CAPABILITY(struct EthernetMMIO, ethernet);
}

This macro must be used in code, it cannot be used for static
initialisation. The macro expands to a load from the compart-
ment's import table. Assigning the result of it to a global is an an-
tipattern: you will get smaller code using it directly. The helper
shown here will be inlined and expand to a single load capabil-
ity.

9. Writing a device driver

168

Now that youhave a pointer to a volatile object representing the device's
MMIO region, you can access its control registers directly. Any device can be
accessed from any compartment in this way, but that access will appear in
the linker audit report.

Any compartment that accesses this device will have an entry in the audit
report (see Chapter 10) that looks like this:

{
"kind": "MMIO",
"length": 516,
"start": 2550136832

},

There is no generic policy for device access because the right
policy depends on the device and the SoC. Consider a device that
has two GPIO pins, one connected to an LED used to indicate a
fault in the device and the other to trigger the sprinkler system
for the building. You would probably write a policy that allows
most compartments to indicate a fault, but restricts access to the
sprinkler control to a single compartment. From the perspective
of both the SoC and the RTOS, the two devices are identical.

You can then audit whether a ̑rmware image enforces whatever policy
you want (for example, no compartment other than a device driver may ac-
cess the device directly). Note that the linker reports will always provide the
addresses and lengths in decimal, because they are standard JSON. CHERIoT
RTOS supports a small number of extensions to JSON in the ̑les that we con-
sume, to improve usability, but don't use these in ̑les that we produce, to
improve interoperability.

There is no requirement to expose a device as a single MMIO region. You
may wish to dȇne multiple regions, which can be as small as a single byte,
so that you can privilege-separate your device driver.

Some devices have a very large control structure. For example, the plat-
form-local interrupt controller is many KiBs. We don't dȇne a C structure
that covers every single ̑eld for this and instead just use uint32_t as the
type for MMIO_CAPABILITY, which lets us treat the space as an array of 32-bit
control registers.

9.4. Accessing the memory-mapped I/O region

169

9.5. Handling interrupts
Interrupts are asynchronous notȋcations fromdevices. Onmostmodern sys-
tems, including CHERIoT, external interrupts are multiplexed by an interrupt
controller. The RISC-V platform-local interrupt controller (PLIC) handles all inter-
rupts coming from devices and forwards them to the core. When the core is
running with interrupts disabled (or, more accurately, deferred), interrupts
are still received by the PLIC and recorded. Similarly, if two interrupts ̑re at
the same time, the PLIC ensures that they are not lost.

When the PLIC delivers an interrupt to the core, it will trigger the switcher
to save the current process's state. The switcherwill then invoke the scheduler,
which will query the PLIC to see which interrupts have ̑red and wake any
threads that were waiting for them.

CHERIoT has a unȋed event model, where the futexes are the only event
source that can block. This means that the same waiting mechanism is used
for both hardware- and software-generated events. In both cases, you will
wait for a futex (see Section 6.5) and then run code when the scheduler wakes
you.

To be able to handle interrupts, you must have a software capability (see
Section 5.6) that authorises access to the interrupt. This capability allows you
to get a pointer to the futex word associated with the interrupt. Futexes are
building blocks for a variety of di̛erent synchronisation primitives. For in-
terrupts, the futexword contains a counter that is incremented each time the
interrupt ̑res. Section 9.6 discusses how to wait on this futex.

Before you can wait for interrupts using a futex, you must get the pointer
to the futex word. This will be a read-only capability to a 32-bit value. For the
Ethernet device that we've been using as an example, you would request the
associated interrupt futex with this macro invocation:
DECLARE_AND_DEFINE_INTERRUPT_CAPABILITY(ethernetInterruptCapability,
Ethernet, true, true);

If you wish to share this between multiple compilation units, you can use
the separate DECLARE_ and DEFINE_ forms (see interrupt.h) but the com-
bined form is normally most convenient. This macro takes four arguments:

1. The name that we're going to use to refer to this capability. The name
ethernetInterruptCapability is arbitrary, you can use whatever
makes sense to you.

2. The name of the interrupt, from the board description ̑le (Ethernet,
in this case).

9. Writing a device driver

170

3. Whether this capability authoriseswaiting for this interrupt (thiswill
almost always be true).

4. Whether this capability authorises acknowledging the interrupt so
that it can ̑re again. This will almost always be true in device drivers
but should generally be true for only one compartment (for each in-
terrupt), whereasmultiple compartmentsmaywish to observe inter-
rupts for monitoring.

Aswith theMMIO capabilities, sealed objects appear in compartment reports.
For example, the above macro expands to this in the ̑nal report:

{
"contents": "10000101",
"kind": "SealedObject",
"sealing_type": {

"compartment": "sched",
"key": "InterruptKey",
"provided_by": "build/cheriot/cheriot/release/example-

firmware.scheduler.compartment",
"symbol": "__export.sealing_type.sched.InterruptKey"

}
The sealing type tells you that this is an interrupt capability (it's sealed

with the InterruptKey type, provided by the scheduler). The contents lets
you audit what this authorises. The ̑rst two bytes are a 16-bit (little-endian
on all currently supported targets) integer containing the interrupt number,
so 1000 means 16 (our Ethernet interrupt number). The next two bytes are
boolean values re̓ecting the last two arguments to the macro, so this autho-
rises both waiting and clearing the macro. Again, this can form part of your
̑rmware auditing.

9.6. Waiting for an interrupt
Now that you're authorised to handle interrupts, you will need something
that you can wait on. Most real-time operating systems allow you to regis-
ter interrupt-service routines (ISRs) directly. CHERIoT RTOS does not allow
this because ISRs run with access to the state of the interrupted thread. On
ArmM-prȏle, some registers are banked but the others are visible, on RISC-
V all registers of the interrupted thread are visible. This means that an ISR
runs with access to the thread and compartment that are interrupted. Not
only would this potentially break compartment isolation, it would be di̕cult
to use safely because the ISR would inherit an (untrusted) stack from the in-
terrupted thread and have access to the interrupted compartment's globals
instead of its own.

9.6. Waiting for an interrupt

171

Instead, CHERIoT RTOSmaps interrupts onto events that threads can wait
on. A single thread with the highest priority that blocks waiting on an inter-
rupt will be run as soon as the switcher and scheduler ̑nish handling the
interrupt. The switcher will spill the interrupted thread's state, the sched-
uler will wake the sleeping thread and note that it is now the highest-priority
runnable thread, and then the switcher will resume from that thread. This
sequence takes around 1,000 cycles on Ibex, giving an interrupt latency of 50
µS at 20 MHz or 10 µS at 100 MHz.

A future version of the CHERIoT architecture is expected to
include extensions to the interrupt controller to allow direct
context switch to a high-priority thread.

Each interrupt is mapped to a futex word, which can be used with sched-
uler waiting primitives. Futexes are discussed in detail in Section 6.5 but, for
the purpose of interrupt handling, you can think of them as counters with
a compare-and-wait operation. You can get the word associated with an in-
terrupt by passing the authorising capability to the interrupt_futex_get
function exported by the scheduler:
const uint32_t *ethernetFutex = ethernetFutex =
interrupt_futex_get(
STATIC_SEALED_VALUE(ethernetInterruptCapability));
The ethernetFutex pointer is now a read-only capability (attempting to

store through it will trap) that contains a number that is incremented every
time the ethernet interrupt ̑res. You can now query whether any interrupts
have ̑red since you last checked by comparing it against a previous value and
you can wait for an interrupt with futex_wait, for example:
do
{

uint32_t last = *ethernetFutex;
// Handle interrupt here

} while (futex_wait(ethernetFutex, last) == 0);
If you want to wait formultiple event sources, you can use themultiwaiter

(see Section 6.12) API. This allows sleeping onmultiple kinds of event sources
so you can, for example, have a single thread that blockswaiting for amessage
to send from another thread or a message to receive from the device.

9.7. Acknowledging interrupts
If you copy the last example into a real device driver then you might be sur-
prised that the loop runs twice and then stops. It will run once on start, once

9. Writing a device driver

172

when the ̑rst interrupt is delivered, and then never again. This is because ex-
ternal interrupts are not delivered on a particular channel unless the preced-
ing one has been acknowledged. A more complete version of the loop above
looks like this:
do
{

uint32_t last = *ethernetFutex;
// Handle interrupt here
interrupt_complete(

STATIC_SEALED_VALUE(ethernetInterruptCapability));
} while ((last != *ethernetFutex) ||

(futex_wait(ethernetFutex, last) == 0));
This includes two changes. The ̑rst is the call to interrupt_complete

once the interrupt has been handled. This tells the scheduler to mark the in-
terrupt as completed in the interrupt handler. It is possible that the interrupt
will then ̑re immediately, in which case there's no point trying to sleep. The
second change checks whether the value of the futex word has changed - if it
has, then we skip the futex_wait call and handle the next interrupt immedi-
ately.

9.8. Exposing device interfaces
CHERIoT device drivers often have two levels of abstraction. The lower level
provides an abstraction across di̛erent devices that ơer similar function-
ality. The higher level provides a security model atop this.

In most cases, the lower-level abstractions are provided as header-only
libraries that can be included in whichever compartments need them. This
allows drivers to be incorporated into another compartment that has full ac-
cess to the device. For example, the scheduler is the only component that
has direct access to the interrupt controller, whereas the memory allocator
is the only component that has full access to the revoker. In both cases, sepa-
rating the driver into a compartment would not provide any security benȇt
because the component that uses the device is allowed to do anything that it
wants to the device and does not need to be protected from the device.

If a device has multiple consumers then it may need a compartment to
handle multiplexing. For example, our debug APIs use the UART directly, but
safe use of the UART would involve locking to avoid interleaved messages.
Implementing thismodelwould use theheader-onlyUARTdriver froma com-
partment and writing a simple interface for reading and writing (possibly
with an authorising capability).

9.8. Exposing device interfaces

173

9.9. Using layered platform includes
Each board description contains a set of include paths. For example, our Ibex
simulator has this:

"driver_includes" : [
"../include/platform/ibex",
"../include/platform/generic-riscv"

],
These are added in this order. The C preprocessor searches ̑les included

with #include in this order stopping at the ̑rst one found. If a ̑le uses #in-
clude_next then the preprocessor will start searching at the place where the
current ̑lewas found. This lets drivers either completely replace generic ver-
sions or include them (via #include_next) with additional code (including
macro dȇnitions) before and after the generic version.

For example, the UART device in the generic-riscv directory dȇnes a
basic 16550 interface. This is templated with the size of the register because
the original 16550 used 8-bit registers, whereas newer versions typically use
the low 8 bits of a 32-bit register. This implementation is su̕cient for sim-
ulated environments but real UARTs with higher-speed cores often require
more control over their frequency to get the right baud rate. We can sup-
port the Synopsis extended 16550 by creating a platform/synopsis directory
containing a platform-uart.hh that uses #include_next <platform-uar-

t.hh> to get the generic version. This can be inserted in the include path
before platform/generic-riscv. A specȋc con̑guration can use this by not
providing anything at a higher level, replace it entirely by providing a cus-
tom platform-uart.hh, or provide a modȋed version of it by using #in-

clude_next.

9.10. Conditionally compiling driver code
The DEVICE_EXISTSmacro canbeusedwith #if to conditionally compile code
depending on whether the current board provides a dȇnition of the device.
This is keyed on the existence of anMMIO region in the board description ̑le
with the specȋed name. For example, the ethernet device that we've been
using as an example could be protected with:
#if DEVICE_EXISTS(ethernet)
// Driver for the ethernet device here.
#endif

9. Writing a device driver

174

This highlights why "ethernet" is not a great name for the
device: ideally the name should be specȋc to the hardware in-
terface, not the high-level functionality, so that you can condi-
tionally compile specȋc drivers.We have used a generic name in
this tutorial to avoid introducing device-specȋc complications.

9.10. Conditionally compiling driver code

175

Chapter 10.
Auditing ̑rmware images
As mentioned in Section 5.6, the CHERIoT link phase emits a linker report at
the same time as the ̑nal image. This is a JSON document that contains a
record of the code identity for every compartment (hashes of every section
before and after linking) and everyway that a compartment can interact with
the world outside of its private state.

If you're linking with your own build system, rather than
CHERIoT RTOS's xmake-based system, you will need to pass --
compartment-report= to the linker invocation to tell it where to
emit the linker report.

The CHERIoT ABI is designed to make this all explicit. A trivial compart-
ment has a code region that is reachable from its pcc and a globals region
reachable from its cgp. Any code running in the compartment (unless explic-
itly constrained) has read-execute access to the former and read-write access
to the latter. Any access outside of this region requires an explicit capability
to be provided to the compartment's import table by the loader. The loader,
in turn, will provide such a capability if, and only if, the linker has created
metadata instructing it to. This means that the system fails closed.

When a security system fails, it will unintentionally enter either a secure
or insecure state. If you have a keypad connected to a door lock and the lock
receives an invalidmessage, it can either open or close the door. Should a fail-
ure open or close the door? The right choice is very di̛erent if the door is to
a bank vault or a ̑re escape. Failing closed means that the failure leaves the
system in the secured state (the door closed in this example). This is an im-
portant property for a security system. If an attacker wants to break a system
that fails open then they simply need to induce a fault of some kind and the
failure mode will grant them the access that they require.

The linker creates the audit report and also creates the instructions for
the loader. If these instructions are omitted, the loader will not provide the
compartment with a capability so, even if the compartment gains knowl-
edge of some address, it does not gain rights to access any memory. If an at-
tacker manages to sneak something into object code that is linked into some
̑rmware and this does not show up in the audit report then it should also
not be used in themetadata that the linker generates to instruct the loader to

177

provision capabilities. This approach is intended to ensure that hiding things
from the audit report does not result in increased rights (failing closed).

There are a lot of di̛erent kinds of capabilities that can end up in a com-
partment's import table. These include:

• Memory-mapped I/O regions, for direct device access.
• Pre-shared objects.
• Static sealed objects implementing software-dȇned capabilities (see
Section 5.6)

• Local function pointers that change interrupt state.
• Imported functions from other compartments.
• Imported functions from shared libraries.

The audit report contains all of this, along with metadata such as whether
functions run with interrupts disabled, whether capabilities to pre-shared
objects or memory-mapped I/O regions have write access, and so on.

When you are building a compartmentalised ̑rmware image, you can use
this report in two di̛erent ways. First, you can introspect over the shape
of the compartment to explore what can happen, for example determining
which compartments call a specȋc entry point or have direct access to a de-
vice. Second, you can write policies that make sure that you have respected
the principle of least privilege.

The cheriot-audit tool is intended to work with both of these ap-
proaches. It runs a Rego program over the input. Rego is a language from
the OpenPolicyAgent project that is designed for writing policies over JSON
documents. It inherits some ideas from JavaScript, Python, and Prolog, but
broadly is intended to be a modular language for writing mostly-declarative
policies that run over one or more JSON documents.

Rego is a rich language and we'll see in this chapter that it can be used
for introspection over ̑rmware in a number of ways. When used for enforce-
ment, a Rego policy is usually a program that evaluates to true if the policy
holds. This may be checked automatically on your build infrastructure to en-
sure that your security goals are met before pushing ̑rmware to the next
stage in testing. It may be checked later before signing ̑rmware, to ensure
that only ̑rmware images that match your security policy are signed.

Rego programs run by cheriot-audit can also produce longer output.
Rather than simply telling you that a policy has been matched, they can cre-
ate a JSON output that describes some properties of a ̑rmware image.

10. Auditing ̑rmware images

178

https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/

In Prolog, predicates are true if they are satis̑ed (i.e. there is
a logical derivation chain that can be used to prove that they are
true) or fail if they cannot be proven. Fail does not necessarily
mean that a predicate is false, it means that there is insu̕cient
evidence to prove that it is true. Rego inherits this distinction,
which can be confusing in some cases. A policy may report true
as a JSON value if it passes, but no output (failure) if it does not.

10.1. Running cheriot-audit

The cheriot-audit command takes three mandatory inputs, provided as
command-line arguments:
The audit report.

This is providedwith the --firmware-report (or -j) ̓ag. Youwill ̑nd
it in the build directory with the same name as the ̑rmware image
but a .json extension. This provides all of the information about the
linked image.

The board description ̑le.
This is provided with the --board (or -b) ̓ag and normally found in
the boards directory in the SDK, but may alternatively be provided by
some other board support package. This describes the memory layout
and allows policies to map from the numerical addresses in the audit
report to device names.

The query to run.
This is the Rego query to run, provided with --query (or -q).

Rego is modular. You can provide additional modules with --module (or -m).
Tomake sure that everything is working, try running a trivial query (true)

against the RTOS repository's hello-world example:
$ cheriot-audit \
--board ../../sdk/boards/sail.json \
--firmware-report build/cheriot/cheriot/release/hello_world.json \
-q 'true'

true
The query true simply evaluates to true as a JSON expression. This is not

very interesting, but it checks that the command is working and can ̑nd all
of the relevant ̑les. You can now try running more complex examples.

10.1. Running cheriot-audit

179

It's often convenient to pipe the output of a cheriot-audit
to jq, which will pretty-print the resulting JSON.

Most policies will refer to one or more of the inputs, though often indi-
rectly. You can try writing these directly as queries. If the query is input then
you should see the entire audit report. If the query is data.board then you
should see the board-description ̑le.

In the rest of this chapter, we'll explore how to write more interesting
queries.

10.2. Using the default cheriot-auditmodules
The cheriot-audit tool has two built-in modules. The compartmentmodule
contains helper rules that are common to the compartment model. The rtos
module contains helpers that specȋc to the CHERIoT RTOS.

Regomodules all show up in the data. namespace, like the board-descrip-
tion ̑le. If you want to invoke a rule from the compartmentmodule, it will be
written as data.compartment.{rule name}.

10.3. Exploring a ̑rmware image
Now that we can run cheriot-audit on the hello-world example, let's try to
learn a bit about it. This example has no compartmentalisation so the UART
device is directly accessible in the single user-provided compartment in the
example. Try this query, to see what compartments or libraries have access
to the UART:
data.compartment.compartments_with_mmio_import(data.board.devices.uart)

This uses a rule from the compartments package to ̑nd any import that
matches the address range provided by the board description ̑le's uart de-
vice. If everything is built correctly (and, in particular, if you're using the
correct board description ̑le) then you should see output like this:
[

"debug"
]

This tells us that the debug library is directly accessing the UART. Remem-
ber that CHERIoT shared libraries do not (unless they are carefully written
assembly) protect their state against callers and this means that any com-
partment that calls any of the entry points in that library should be assumed

10. Auditing ̑rmware images

180

to be able to access the UART. Ask cheriot-audit which compartments call
functions in the debug library with this query:
data.compartment.compartments_calling("debug")

This should, hopefully, tell you that only the 'hello' compartment can:
[

"hello"
]

If you've built the ̑rmware image with allocator or scheduler debugging
enabled, the answer will be di̛erent. This is the kind of thing that's useful
to capture in a policy. You might want to build ̑rmware images where the
scheduler has access to a debugging feature for testing, but youwouldn'twant
to sign those images for widespread deployment.

Now try running the same query against the third example from the
RTOS, 03.hello_safe_compartment. This example moves UART access out to
a 'uart' compartment so that the 'hello' compartment can be untrusted and
just provide strings to print. You might therefore be surprised that the result
of the query looks like this:
[

"hello",
"uart"

]
This tells you that the compartmentalisation objective—removing UART

access from the hello compartment—has not been met. The hello compart-
ment still has access to the UART via the debug library.

This is because the example prefers to give useful error messages in case
of failure and includes the fail-simulator-on-error.h header. This header
provides an error handler (see Section 5.12) that logs a message to the UART
and exits the simulator if a CHERI exception occurs. If you comment out that
header, the examplewill meet its compartmentalisation objective. Again, this
is the kind of thing that's useful to have in a policy. It's useful to include this
kind of feature in debug builds, but youwant tomake sure that you don't leave
them enabled in builds that you deploy to end users.

10.4. Decoding software-dȇned capabilities
CHERIoT builds a software capability model on top of the hardware capabil-
ity model provided by CHERI. Software capabilities are implemented as ob-
jects that are passed around as sealed capabilities. Some of these are dynami-
cally allocated, others are baked into the ̑rmware image. Unless you have the

10.4. Decoding software-dȇned capabilities

181

sealing capability that permits unsealing a given type, these are just opaque
pointers.

Sealed objects that are baked into the ̑rmware are accessible to one com-
partment as an opaque pointer but can be unsealed by another compartment
to access their contents. The compartment that unseals them will trust their
contents. You can make them trustworthy by auditing their contents at link
time.

The RTOS uses software-dȇned capabilities to authorise memory alloca-
tion (which, in turn, is required for creating dynamically allocated sealed ob-
jects, among other things). These will show up in the audit report looking
something like this:
{

"contents": "00040000 00000000 00000000 00000000 00000000
00000000",

"kind": "SealedObject",
"sealing_type": {

"compartment": "allocator",
"key": "MallocKey",
"provided_by": "build/cheriot/cheriot/release/

cheriot.allocator.compartment",
"symbol": "__export.sealing_type.allocator.MallocKey"

}
}

The contents is a hex stringwith one block per 32-bitword. The kind iden-
tȋes them as sealed objects. The sealing_type tells you the compartment
and the sealing key that are used to seal the object (i.e. the compartment that
can unseal them and the name it gives to the key that it uses).

In the rtos package, there is a Rego rule that matches imports that are
sealed with the correct value:

11 is_allocator_capability(capability) {
12 capability.kind == "SealedObject"
13 capability.sealing_type.compartment == "allocator"
14 capability.sealing_type.key == "MallocKey"
15 }

Lཥၑၣཥ࿏༥ 71. The Rego rule for matching objects sealed as allocator capabilities
[from: examples/auditing-rtos/rtos.rego]

This matches every import that refers to a sealed object that is sealed with
the correct key, independent of its contents. The contents remain an opaque
blob. These capabilities are 24-byte objects, where the ̑rst four bytes rep-
resent the quota and the remainder is reserved for future use (including in-

10. Auditing ̑rmware images

182

ternal use by the allocator) and must be initialised to zero. The rtos package
uses the following rule to decode them:

19 decode_allocator_capability(capability) = decoded {
20 is_allocator_capability(capability)
21 some quota
22 quota = integer_from_hex_string(capability.contents, 0, 4)
23 # Remaining words are all zero
24 integer_from_hex_string(capability.contents, 4, 4) == 0
25 integer_from_hex_string(capability.contents, 8, 4) == 0
26 integer_from_hex_string(capability.contents, 12, 4) == 0
27 integer_from_hex_string(capability.contents, 16, 4) == 0
28 integer_from_hex_string(capability.contents, 20, 4) == 0
29 decoded := { "quota": quota }
30 }

Lཥၑၣཥ࿏༥ 72. The Rego rule for decoding allocator capabilities
[from: examples/auditing-rtos/rtos.rego]

This uses the earlier rule to check the sealing kind. If the argument is
not a sealed object of the correct kind, this fails and so will any rule that
tries to use the result. The quota is decoded with a built-in function provided
by cheriot-audit called integer_from_hex_string. This takes the contents
string, a start ơset, and a width as arguments. The rule uses this to get the
̑rst word and assign it to the quota variable and then make sure that all of
the others are zero.

Rego rules written like this are conjunctions. Every statement in the rule
must be true. If any statement is not true, the rule fails. This means that by
the time we reach the end where decoded is set, the rule has checked that
this is a valid allocator capability and returns a JSON object with a single ̑eld
called quota containing the extracted quota. If any of the rules are false, this
is not a valid allocator capability. You can use this later in policies to make
sure that everything that is a sealed allocator capability is a valid allocator
capability.

Most of the time, you'll use this kind of rule with a Rego comprehension.
Comprehensions take some input array, ̑lter it based on a predicate, and
then use the ̑ltered versions to construct a new array or set. For example, the
following comprehension starts with every import for every compartment.
For each import, the import is assigned to c and the owner of the import to
owner. It then uses the is_allocator_capability predicate to ̑lter out im-
ports that are not allocator capabilities. Finally, for each entry that is valid
it will construct a new JSON object capturing the name of the compartment
that owns this capability and the decoded capability.

10.4. Decoding software-dȇned capabilities

183

[
{
"owner": owner,
"capability": data.rtos.decode_allocator_capability(c)

} |
c = input.compartments[owner].imports[_] ;
data.rtos.is_allocator_capability(c)

]
Try running this query (on the command line, youwill need to remove line

breaks) on a ̑rmware image. Here's the output of running it on one of the
network stack examples:
[

{
"capability": {

"quota": 4096
},
"owner": "Firewall"

},
{

"capability": {
"quota": 16384

},
"owner": "SNTP"

},
{

"capability": {
"quota": 65536

},
"owner": "TCPIP"

}
]

This shows that (in this specȋc build) the TCP/IP compartment can allo-
cate 64 KiB of heap memory, the Firewall compartment 4 KiB and the SNTP
compartment 16 KiB. Importantly, nothing else can allocate memory. You
might care about determining the maximum amount of heap space that all
compartments are able to allocate. A similar comprehension can extract the
quota ̑eld from the decoded capabilities and then the built-in sum function
can add all of these together:
sum([data.rtos.decode_allocator_capability(c).quota |

c = input.compartments[_].imports[_] ;
data.rtos.is_allocator_capability(c)])

In many cases, you'll be happy with quotas adding up to more than 100%
of heap space. In other cases, youmay want to make sure that a particular set
of compartments can't allocate more than a ̑xed amount of heap space, to
ensure that a certain amount is available for other uses.

10. Auditing ̑rmware images

184

10.5. Writing a policy
Rego policies for cheriot-auditwill combine a lot of the building blocks that
we've seen so far, as well as some helpers. The compartment module includes
some helpers for dȇning allow lists. These are built using comprehensions,
similar to the ones that we looked at earlier, to collect the set of compart-
ments that can do something and then ensure that this is a subset of a pro-
vided set.

The rtos module exposes a rule called valid that performs a set of in-
tegrity checks on the RTOS. This can be used in a ̑rmware-specȋc image, or
parts of it can be reused. It's also a good reference for the kinds of things that
may appear in policies.

The RTOS policy starts with a check that all of the allocator capabilities are
valid:

62 all_sealed_allocator_capabilities_are_valid
63

Lཥၑၣཥ࿏༥ 73. The Rego expression checking that all sealed allocator capabilities
are valid [from: examples/auditing-rtos/rtos.rego]

This uses a helper that looks similar to some of the introspection code that
we've already looked at:

34 all_sealed_allocator_capabilities_are_valid {
35 some allocatorCapabilities
36 allocatorCapabilities = [c |
37 c = input.compartments[_].imports[_] ;
38 is_allocator_capability(c)
39]
40 every c in allocatorCapabilities {
41 decode_allocator_capability(c)
42 }
43 }

Lཥၑၣཥ࿏༥ 74. The Rego rule implementing the check that all sealed allocator
capabilities are valid [from: examples/auditing-rtos/rtos.rego]

This uses a list comprehension to collect everything that claims to be an
allocator capability (i.e. everything sealed with the correct type). It then as-
serts that everything in this list must be a valid allocator capability by using
the fact that the decode_allocator_capability rule fails if given an invalid
allocator capability. If anything is sealed as an allocator capability but is not
a 24-byte object where the last 20 bytes are zero, this will fail.

10.5. Writing a policy

185

Next, the policy uses some allow lists tomake sure that certain devices are
reserved for core components:

65
66 # Only the allocator may access the revoker.
67 data.compartment.mmio_allow_list("revoker",
68 {"allocator"})
69 # Only the scheduler may access the
70 # interrupt controllers.
71 data.compartment.mmio_allow_list("clint",
72 {"scheduler"})
73 data.compartment.mmio_allow_list("plic",
74 {"scheduler"})
75

Lཥၑၣཥ࿏༥ 75. The compartment allow lists in the RTOS policy
[from: examples/auditing-rtos/rtos.rego]

The interface to the revoker (the hardware component that invalidates ca-
pabilities to freed memory, allowing reuse) is reserved for the allocator. The
core-local and platform-level interrupt controllers (CLIC and PLIC) are both
reserved for the scheduler: nothing else should directly handle interrupts,
the scheduler exposes APIs for other compartments to wait for or acknowl-
edge interrupts.

Finally, it checks the access to some pre-shared objects:
The hazard-pointer list is used to implement the ephemeral claimsmecha-

nism described in Section 7.8. The allocator is the only thing that should have
access to it (the switcher also exposes a write-only view of a part of it for the
current thread).

Concurrent access to this is mediated via a 32-bit epoch variable that is in-
cremented when the allocator starts and ̑nishes reading the list. This means
that it is safe to write to if the value is even, and that value is safely stored if
the epoch is unchanged before and after writing. This is safe for anything to
read, but only the allocator should write to it.

Finally, the rule checks that these are the expected size.
Together, this provides a policy that checks that the properties that the

core RTOS expects hold true. There are some omissions here. For example,
in a release version, this policy may add checks to ensure that the core RTOS
components are the code expected as part of a reproducible build chain. This
is not part of the core policy because it would be violated every time the
toolchain changed.

10. Auditing ̑rmware images

186

76
77 # Only the allocator may access the
78 # hazard list (the switcher can
79 # as well via another mechanism)
80 data.compartment.shared_object_allow_list(
81 "allocator_hazard_pointers",
82 {"allocator"})
83 # Only the allocator may write to the epoch.
84 # Currently, only the compartment-helpers library
85 # reads the epoch, but it isn't a security problem
86 # if anything else does.
87 data.compartment.shared_object_writeable_allow_list(
88 "allocator_epoch",
89 {"allocator"})
90 # Size of hazard list and allocator epoch.
91 some hazardList
92 hazardList = data.compartment.shared_object(
93 "allocator_hazard_pointers")
94 # Two hazard pointers per thread.
95 hazardList.end - hazardList.start =
96 count(input.threads) * 2 * 8
97 some epoch
98 epoch = data.compartment.shared_object(
99 "allocator_epoch")
100 # 32-bit epoch
101 epoch.end - epoch.start = 4
102

Lཥၑၣཥ࿏༥ 76. The RTOS policy for access to pre-shared objects
[from: examples/auditing-rtos/rtos.rego]

10.5. Writing a policy

187

Chapter 11.
Networking
The CHERIoT network stack is intended to serve three purposes:

• An example of a compartmentalized structure incorporating large
amounts of existing code.

• An ơ-the-shelf solution for common IoT device networking needs.
• An example for building more specialised networking systems.

The current stack contains code from several third-party projects: the FreeR-
TOS TCP/IP stack, alongwith their SNTP andMQTT libraries, and the BearSSL
TLS implementation. These are wrapped in rich capability interfaces and de-
ployed in several compartments.

Currently, none of the simulators provide a network connec-
tion. The examples in this chapter will default to using Sonata,
but should also work on the Arty A7 and future hardware.

11.1. Understanding the structure of the network stack
The core compartments in the network stack are shown in Figure 6. These do
not include the SNTP and MQTT compartments, which we'll see later.

The TCP/IP and TLS stacks are largely existing code, from the FreeR-
TOS+TCP and BearSSL projects, respectively. The BearSSL code has no plat-
form dependencies and is simply recompiled. The FreeRTOS+TCP code, un-
surprisingly, assumes that it is running on FreeRTOS and is ported using the
compatibility layer described in Chapter 14.

In the initial port, the FreeRTOS+TCP code required only one change. It
normally expects to create threads during early initialisation. Thȇle that did
this was wrapped in something that instead triggered a barrier to allow the
statically created threads to start running. Later changes for network-stack
reset required some additional steps, though none of these modȋed any of
the FreeRTOS+TCP code.

Each box in the diagram is a compartment (the User Code box is a place-
holder for at least one compartment). The compartments have di̛erent goals
and requirements.

The ̑rewall does both ingress and egress ̑ltering and is the only com-
ponent in the system that has access to the memory-mapped I/O range for

189

TCP/IP Stack
(FreeRTOS+TCP) Network API compartment

On-Device Firewall

User Code

Establish connection to host
identified by static capability

Receive (HMAC-verified) data
Send data

Requests sockets

Opens firewall
holes

Sends and receives
packet data

Sends and receives
Ethernet frames

Requests connected
socket

Returns connected
socket

DNS Compartment

TLS Stack (BearSSL)

Sends and receives
Ethernet frames

Closes firewall
holes

Performs
DNS

lookups

Network device
(MMIO region)

Send and receive
Ethernet frames

Fཥ༥ၸျໞ 6. The core compartments in the network stack.
the Ethernet device. Ingress ̑ltering reduces the attack surface of the TCP/IP
layer. If there are no listening TCP sockets or unrestricted UDP ones, the ̑re-
wall will drop all packets that do not come from an approved peer. Typically,
an attacker on the local network segment can forge origin addresses but that
gets harder across the Internet. Egress ̑ltering is less common on embedded
devices, which is unfortunate. The Mirai botnet launched large distributed
denial of service (DDoS) attacks by compromising large numbers of embedded
systems and using them to each generate relatively small amounts of tra̕c.
With the CHERIoT network stack, this is much harder because the ̑rewall
compartment will not usually allow other compartments to send packets to
arbitrary targets.

The Network API compartment is new code and implements the control
plane. When you want to create a socket or authorise a remote endpoint, you

11. Networking

190

must call this compartment. It uses a software capability model to determine
whether callers are allowed to talk to remote endpoints and then opens holes
in the ̑rewall to authorise this. When you want to create a connected socket,
you present this compartment with a software capability that authorises you
to talk to a remote host on a specȋc port. It brie̓y opens a ̑rewall hole
for DNS requests and instructs the DNS compartment to perform the lookup,
then it closes that ̑rewall hole and opens one for the connection. The socket
that it returns is created by the TCP/IP compartment so you can then send
and receive data by calling the TCP/IP compartment directly.

11.2. Synchronising time with SNTP
The Network Time Protocol (NTP) is a complex protocol for synchronising time
with a remote server. It is designed to build a tree of clock sources where each
stratum is synchronised with amore authoritative one. Clients sendmessages
to an NTP server and receive the current time back. The full protocol uses
some complex statistical techniques to dynamically calculate the time taken
for the response to arrive across the network and minimise clock drift. The
Simple Network Time Protocol (SNTP) is a subset of NTP intended for simple em-
bedded devices. It will not give the same level of accuracy but can run on very
resource-constrained devices.

Using SNTP doesn't require writing any code that talks directly to the net-
work but it does require building and linking the network stack, so that is a
good place to start. First, you need to ̑nd the network-stack code. Listing 77
shows one way to do this, which is similar to how we ̑nd the SDK. This pro-
vides a hard-coded relative location and allows it to be overridden with an
environment variable.

10 networkstackdir = os.getenv("CHERIOT_NETWORK") or
11 "../../network-stack/"
12 includes(path.join(networkstackdir,"lib"))

Lཥၑၣཥ࿏༥ 77. Build system code for including the network stack.
[from: examples/sntp/xmake.lua]

Next, you need to make sure that code using the network stack ̑nds the
headers by adding the include directory (Listing 78). You must also explic-
itly add the SNTP compartment as a dependency in the compartment target,
though this is somewhat redundant because we'll also add it globally later.
Finally, the network stack provides an option to users to decide whether they

11.2. Synchronising time with SNTP

191

want IPv6 support. This a̛ects some of the dȇnitions in headers so youmust
dȇne the same ̓ag in your compartment to avoid linker errors.

22 compartment("sntp_example")
23 add_includedirs(path.join(networkstackdir,"include"))
24 add_deps("freestanding", "SNTP")
25 add_files("sntp.cc")
26 on_load(function(target)
27 target:add('options', "IPv6")
28 local IPv6 = get_config("IPv6")
29 target:add("defines",
30 "CHERIOT_RTOS_OPTION_IPv6=" .. tostring(IPv6))
31 end)

Lཥၑၣཥ࿏༥ 78. Build system code for building a compartment that uses the network
stack. [from: examples/sntp/xmake.lua]

Next, the ̑rmware dȇnition needs to contain two things. First, it must
add dependencies on the components of the network stack, as shown in List-
ing 79. The ̑rst four are ones that we've already discussed. The SNTP com-
partment is (hopefully) obvious. The time helpers library is not something
that we've looked at so far and you'll see what it does whenwe start using the
SNTP APIs.

38 add_deps("DNS", "TCPIP", "Firewall", "NetAPI",
39 "SNTP", "time_helpers")

Lཥၑၣཥ࿏༥ 79. Build system code for adding dependencies on the network stack.
[from: examples/sntp/xmake.lua]

Finally, you need to create the threads that the network stack uses. The
thread that starts in the Firewall compartment handles incoming packets.
This calls into the TCP/IP compartment for each packet, to enqueue it for
handling. The other thread handles TCP retransmissions, keep-alive packets,
and so on. TCP provides a reliable transport over an unreliable network and
so has to bưer each outgoing packet until the receiver acknowledges receipt.
Dropped packets are retransmitted until the acknowledgement arrives.

With the build system logic done, you can start using the network stack.
Anything that uses the network stack will need to call network_start early
on, as shown in Listing 81. This brings up the network stack, gets the DHCP
lease, and so on. This is a blocking call and will return once the network is
initialised.

11. Networking

192

53 {
54 -- TCP/IP stack thread.
55 compartment = "TCPIP",
56 priority = 1,
57 entry_point = "ip_thread_entry",
58 stack_size = 0xe00,
59 trusted_stack_frames = 5
60 },
61 {
62 -- Firewall thread, handles incoming packets as they
63 -- arrive.
64 compartment = "Firewall",
65 -- Higher priority, this will be back-pressured by
66 -- the message queue if the network stack can't keep
67 -- up, but we want packets to arrive immediately.
68 priority = 2,
69 entry_point = "ethernet_run_driver",
70 stack_size = 0x1000,
71 trusted_stack_frames = 5
72 }

Lཥၑၣཥ࿏༥ 80. Build system code for dȇning the network stack's threads.
[from: examples/sntp/xmake.lua]

13 Debug::log("Starting network stack");
14 network_start();

Lཥၑၣཥ࿏༥ 81. Initialisation for the network stack. [from: examples/sntp/sntp.cc]

Next, you must ask the SNTP compartment to update the time. The snt-
p_update function, shown in Listing 82, is a blocking call that will attempt
to update the time and return failure if it does not manage within the time-
out. In this example, we simply keep trying in a loop. In a real system, you
would probably want to handle the case where the network is unavailable
more gracefully.

18 Timeout t{MS_TO_TICKS(1000)};
19 Debug::log("Trying to fetch SNTP time");
20 while (sntp_update(&t) != 0)
21 {
22 Debug::log("Failed to update NTP time");
23 t = Timeout{MS_TO_TICKS(1000)};
24 }

Lཥၑၣཥ࿏༥ 82. Updating the time from the SNTP server. [from: examples/sntp/sntp.cc]

11.2. Synchronising time with SNTP

193

A lot of things happen behind the scenes for this to work. The SNTP com-
partment holds a capability that authorises it to talk to the remoteNTP server.
It presents this capability to the network API compartment, which opens the
̑rewall hole for DNS lookups and then instructs the DNS compartment to
perform the lookup. The DNS compartment then sends a DNS lookup to the
̑rewall, which forwards it to the Ethernet device and forwards the response
back. Next, the network API compartment opens a ̑rewall hole for the local
UDP port to the remote host on port 123 (theNTP port) and returns the socket
to the SNTP compartment. The SNTP compartment then passes this socket to
the TCP/IP compartment to send and receive NTP packets. Finally, it asks the
TCP/IP compartment to close the socket and the TCP/IP compartment asks
the ̑rewall compartment to close the ̑rewall hole. When the SNTP compart-
ment receives the response and knows the time, it sets some state in a pre-
shared object for detecting the time.

Once the current time has been fetched, you can get the current time of
day. Listing 83 shows a loop that runs roughly every 50ms and prints the time
(as a UNIX epoch timestamp) if the number of seconds has changed since last
time. The gettimeofday function called here is from the time helpers library
that was mentioned earlier.

28 time_t lastTime = 0;
29 while (true)
30 {
31 timeval tv;
32 int ret = gettimeofday(&tv, nullptr);
33 if (ret != 0)
34 {
35 Debug::log("Failed to get time of day: {}", ret);
36 }
37 else if (lastTime != tv.tv_sec)
38 {
39 lastTime = tv.tv_sec;
40 // Truncate the epoch time to 32 bits for printing.
41 Debug::log("Current UNIX epoch time: {}", tv.tv_sec);
42 }
43 Timeout shortSleep{MS_TO_TICKS(50)};
44 thread_sleep(&shortSleep);
45 }

Lཥၑၣཥ࿏༥ 83. Printing the current UNIX epoch time. [from: examples/sntp/sntp.cc]

The SNTP compartment and the time helpers library share a pre-shared
object (see Section 5.7) which contains the UNIX timestamp at the time of the
last NTP update, the cycle time of the last update, and the current epoch. The

11. Networking

194

SNTP compartment has a read-write view of this, the time helpers library a
read-only view. When the SNTP compartment updates this, it increments the
epoch once, writes the new value, and then increments the epoch again. The
time library can therefore get a consistent snapshot of the values by read-
ing the epoch, reading the other values, and then reading the epoch again to
make sure that it hasn't changed. If the epoch value is odd, the time helpers
library does a futex wait operation to block until the value has changed. The
SNTP compartment does a futex-wake operation after the update towake any
waiters.

This means that, most of the time, calling gettimeofday does not require
any cross-compartment calls.

When you run this example, you should see the time printed once per sec-
ond, something like this:
Network test: Starting network stack
Network test: Trying to fetch SNTP time
Network test: Current UNIX epoch time: 1735563080
Network test: Current UNIX epoch time: 1735563081
Network test: Current UNIX epoch time: 1735563082
Network test: Current UNIX epoch time: 1735563083
Network test: Current UNIX epoch time: 1735563084

At the time of writing, there is a problemwith the Sonata net-
work interface's ability to receive IPv6 packets. If you try this
example on Sonata and it does not work, try adding --IPv6=n to
the end of your xmake line during the config stage.

If you leave this running for a while, the clock will eventually drift. Try
modifying this example to update the time from the NTP server once per
minute.

11.3. Creating a connected socket
In the traditional Berkeley Sockets model, creating a connected socket is a
multi-step operation. First, you must create the socket. Next, you may (op-
tionally) bind it to a specȋc local port, though this step is usually omitted.
Finally, you connect it. The CHERIoT network stack combines these into a sin-
gle network_socket_connect_tcp call.

As you might expect from CHERIoT, this is a capability-based API. It re-
quires a capability to authorise connecting to a specȋc host, along with a
capability to allocate memory for the socket state. The latter ensures that all

11.3. Creating a connected socket

195

Documentation for the network_socket_connect_tcp function
Socket network_socket_connect_tcp(Timeout * timeout,
AllocatorCapability mallocCapability, ConnectionCapability
hostCapability)

Create a connected TCP socket.
This function will block until the connection is established or the
timeout is reached.
The mallocCapability argument is used to allocate memory for the
socket and must have su̕cient quota remaining for the socket.
The hostCapability argument is a capability authorising the connec-
tion to a specȋc host.
This returns a valid sealed capability to a socket on success, or an un-
tagged value on failure.

memory used for a network connection is accounted to the compartment that
created it.

You need to dȇne a connection capability before you can use one. Listing
84 shows an example that allows connecting with TCP to the towel.blinken-
lights.nl host, on port 23, the well-known telnet port. This capability will
show up in the auditing report for the ̑rmware image (as discussed in Chap-
ter 10), so you can ensure that specȋc compartments in your ̑rmware image
are permitted to connect only to remote hosts that you authorised.

16 DECLARE_AND_DEFINE_CONNECTION_CAPABILITY(
17 Server,
18 "towel.blinkenlights.nl",
19 23,
20 ConnectionTypeTCP);

Lཥၑၣཥ࿏༥ 84. A static capability that authorises connecting to a remote server.
[from: examples/tcp/tcp.cc]

The connect call is shown in Listing 85. This passes the capability for the
server along with this compartment's default malloc capability. You can sep-
arate the quota that your compartment uses for network-related things and
provide a di̛erent capability. This is useful if, for example, you wish to call

11. Networking

196

heap_free_all on your default malloc capability but not a̛ect any network
state

30 Timeout unlimited{UnlimitedTimeout};
31 auto socket =
32 network_socket_connect_tcp(&unlimited,
33 MALLOC_CAPABILITY,
34 STATIC_SEALED_VALUE(Server));
35 if (!CHERI::Capability{socket}.is_valid())
36 {
37 Debug::log("Failed to connect");
38 return;
39 }

Lཥၑၣཥ࿏༥ 85. Connecting to a remote server. [from: examples/tcp/tcp.cc]

The result of this call is a valid sealed capability to the socket. All of the state
required for the socket will be allocated with the allocator capability that you
passed (and counted against your quota), but is not directly accessible to you.
On a POSIX system, the result of a socket call is a ̑le descriptor. OnWindows,
it is a HANDLE. These are both opaque types that reference some internal data
structure that the kernel associates with your process. In contrast, a sealed
capability is just a pointer, but a type-safe tamper-proof one. You can pass
it between compartments (allowing multiple compartments to use the same
socket) but only the TCP/IP compartment can unseal it to access the internal
state. If the connection fails, you will get back an untagged capability.

Currently, network_socket_connect_tcp does not report the
reason for a failure. A future versionwill likely use negative error
codes in the address of untagged capabilities, so it's important
to check whether the returned value is a valid capability, rather
than comparing it against NULL or nullptr.

Assuming that the connection succeeded, you are now ready to start try-
ing to receive data, as shown in Listing 86. The network_socket_receive call
is quite di̛erent from a conventional socket receive. On most operating sys-
tems, a system call cannot allocate userspace memory andmust take a bưer
for the kernel to write into. This is unfortunate because the kernel knows the
amount of data available, but the caller does not. If the caller provides too
small a bưer, they must then do another call to get the rest of the data. If
they provide too large a bưer, they have wasted memory. In contrast, the

11.3. Creating a connected socket

197

network_socket_receive API allows the TCP/IP compartment to allocate a
bưer large enough for the available data.

43 while (true)
44 {
45 auto [received, buffer] = network_socket_receive(
46 &unlimited, MALLOC_CAPABILITY, socket);
47 if (received < 0)
48 {
49 Debug::log("Error: {}", received);
50 return;
51 }
52 for (size_t i = 0; i < received; i++)
53 {
54 MMIO_CAPABILITY(Uart, uart)
55 ->blocking_write(buffer[i]);
56 }
57 free(buffer);
58 }

Lཥၑၣཥ࿏༥ 86. Receiving data from a remote server. [from: examples/tcp/tcp.cc]

⚠

The network_socket_receive interface is convenient but it
does not guarantee that the TCP/IP stack has not kept a pointer
to the returned bưer. The TCP/IP compartment will not do this
in normal operation but if an attackermanages to gain arbitrary-
code execution in the TCP/IP compartment then they may be
able to exploit time-of-check-to-time-of-use (TOCTOU) bugs in
your code. This is not a problem for this example, which reads
each byte in the returned bưer exactly once.

The result of the network_socket_receive is a struct NetworkRe-
ceiveResult, which contains two ̑elds. The ̑rst ̑eld, bytesReceived, is the
number of bytes received, or a negative error code. The second, buffer is the
bưer (which will be null in error cases). This example uses C++ structured
binding to decompose the structure and make it appear as if the function
returned two values.

In this example,we are assuming that theTCP/IP stack is trusted. TheTCP/
IP compartment could attack this example by providing a received size that is
greater than the claimed size, or one that lacks read permission. This example
has no secrets and, if the network stack is compromised, can do nothing, and
so does not worry about these potential problems. If you have such concerns,

11. Networking

198

then you should put the code that uses the result in an error-handling block,
or use network_socket_receive_preallocated instead.

This example is simply writing the result to the UART directly. The server
that it connects to will provide you with an ASCII-art rendering of Star Wars:
A New Hope. After the initial banner and the scrolling text, you should see
something like this:

/~\
|oo) What plans?
\=/

___ / _ \
/ ()\ //|/.\|\\

_|_____|_ || _/ ||
| | === | | || |\ /| ||
|_| O |_| # _ _/ #
|| O || | | |
||__*__|| | | |

|~ ___/ ~| []|[]
/=\ /=\ /=\ | | |

__________[_]_[_]_[_]________/_]_[__________________

Documentation for the network_socket_receive_preallocated
function
int network_socket_receive_preallocated(Timeout * timeout,
Socket socket, void * buffer, size_t length)

Receive data from a socket into a preallocated bưer. This will block
until data are received or the timeout expires. If data are received,
they will be stored in the provided bưer.
NOTE: Callers should remove global and loadpermissions from buffer
before passing it to this function if they are worried about a poten-
tially compromised network stack.
The return value is either the number of bytes received, or a negative
error code.
The negative values will be errno values:

• -EPERM: buffer and/or length are invalid.
• -EINVAL: The socket is not valid.
• -ETIMEDOUT: The timeout was reached before data could be re-
ceived.

• -ENOTCONN: The socket is not connected.

11.3. Creating a connected socket

199

11.4. Creating a listening socket
Listening sockets, like connected ones, require an authorising capability. This
is shown in Listing 87 and includes the local port number that you can bind to
alongwith thenumber of pending connections that are allowed. The second is
important for limiting the amount of the TCP/IP compartment'smemory you
can consume. Each unaccepted socket requires some state in the TCP/IP stack
so allowing an unbounded number would consume an unlimited amount of
memory. For most embedded uses, one or two is adequate.

60 DECLARE_AND_DEFINE_BIND_CAPABILITY(
61 /* Name */ ServerPort,
62 /* Bind on IPv6? */ UseIPv6,
63 /* Port number */ 1234,
64 /* Concurrent connection limit */ 1);

Lཥၑၣཥ࿏༥ 87. A static capability that authorises binding to a local port.
[from: examples/tcp_echo_server/tcp.cc]

As with the connect operation, the authorising capability is not the only
place that the CHERIoTnetwork stack's APIs di̛er from the traditional Berke-
ley Sockets APIs. As shown in Listing 88, the socket, bind and listen opera-
tions are combined. The network_socket_listen_tcp call creates the socket,
binds it to the local port associatedwith the authorising capability, andmakes
it ready to accept.

75 Timeout unlimited{UnlimitedTimeout};
76 auto socket = network_socket_listen_tcp(
77 &unlimited,
78 MALLOC_CAPABILITY,
79 STATIC_SEALED_VALUE(ServerPort));
80 if (!CHERI::Capability{socket}.is_valid())
81 {
82 Debug::log("Failed to bind to local port");
83 return;
84 }

Lཥၑၣཥ࿏༥ 88. Listening for TCP connections to a local port.
[from: examples/tcp_echo_server/tcp.cc]

A listening socket is simply a placeholder for a local endpoint. You cannot
send or receive with it, all that you can do is accept new connections. The
network_socket_accept_tcp call, shown in Listing 89, creates a new socket
for the accepted connection and, optionally, returns the remote IP address

11. Networking

200

and port. If you do not care about the address of the connecting host, you can
pass null to the last two arguments.

88 while (true)
89 {
90 Debug::log("Listening for connections...");
91 NetworkAddress address;
92 uint16_t port;
93 auto accepted =
94 network_socket_accept_tcp(&unlimited,
95 MALLOC_CAPABILITY,
96 socket,
97 &address,
98 &port);
99 if (!CHERI::Capability{accepted}.is_valid())
100 {
101 continue;
102 }
103 Debug::log("Received connection from {} on port {}",
104 address,
105 int32_t(port));
106 char byte;
107 while (network_socket_receive_preallocated(
108 &unlimited, accepted, &byte, 1) == 1)
109 {
110 network_socket_send(&unlimited, accepted, &byte, 1);
111 MMIO_CAPABILITY(Uart, uart)->blocking_write(byte);
112 }
113 network_socket_close(
114 &unlimited, MALLOC_CAPABILITY, accepted);
115 }

Lཥၑၣཥ࿏༥ 89. Accepting TCP connections and running a simple echo-server loop.
[from: examples/tcp_echo_server/tcp.cc]

After accepting a connection, this example simply sits in a loop reading
one byte at a time and sending it back. It also writes the received byte to the
UART. The send function is very similar to the receive. It takes a pointer to
a bưer and a length. The network stack's interface is written defensively. If
the length is smaller than the bounds of the bưer, or if the bưer has the
wrong permissions, this call will fail.

Note here that the on-stack bưer (the single byte local variable) is derived
from our stack pointer and so is automatically local. This ensures that the
TCP/IP compartment cannot capture it.

11.4. Creating a listening socket

201

Documentation for the network_socket_send function
ssize_t network_socket_send(Timeout * timeout, Socket
socket, void * buffer, size_t length)

Send data over a TCP socket. This will block until the data have been
sent or the timeout expires.

The inner loop is waiting for the receive call to return a value other than
1, indicating that it has failed to receive. This should happen when the con-
nection is dropped.

The inner loop uses an unlimited timeout, so that the demo doesn't fail if
you get distracted in themiddle of running it. Amore realistic examplewould
use a shorter timeout on the receive call. Short timeouts are useful to prevent
denial of service issues. This simple example, like many embedded network
servers, is single threaded and handles one connection at a time. Without
the timeout, a single client failing to gracefully disconnect could prevent any
future access until the device is restarted.

If you connect to this example with netcat, you can try sending it some
text, which it should echo back. Here, my Sonata board has joined my local
network with a DHCP-assigned address of 192.168.1.154:
$ nc 192.168.1.154 1234
Hello world!
Hello world!

On the UART console, you can see the debuggingmessages, along with the
echoed text:
TCP Server Example: Starting network stack
TCP Server Example: Creating listening socket
TCP Server Example: Listening for connections...
TCP Server Example: Received connection from 192.168.1.86 on port
62599
Hello world!

11.5. Securing connections with TLS
In general, the kind of unencrypted communication that we've seen so far is
inappropriate for the modern Internet. Anyone who has control of any node
on the network between the device and the remote server can tamper with
messages. Such malicious messages may attack software on the device, at-
tempting to exploit vulnerabilities.

11. Networking

202

This is the threat model for a lot of the network stack work on CHERIoT: a
remote attacker is trying to compromise the device. The ̑rewall makes this
class of attack somewhat harder, by ensuring that an attacker must spoof
packets for a valid connection. This defence is weakened if your device uses
a server socket because, by design, these must allow packets from unknown
remote hosts.

An attacker who sneaks a packet past the ̑rewall can attack the TCP/IP
compartment. This is a fairly complex piece of code, which does dangerous
things like packet parsing. It is written in MISRA C and is more likely to be
correct and secure thanmost C code, but it may still contain bugs. The simple
act of compiling it for a CHERIoT target mitigates a large number of possible
bugs, as does the memorymanagement strategy. Every incoming packet (and
every outgoing packet) is a fresh heap allocation, which ensures that dangling
references to processed packetswill trap, aswill bounds errors. Any such bugs
will cause the network stack to gracefully reset, as described in Section 11.8.

Without encryption, the TCP/IP stack is not the limit of the attack surface.
An attacker can push data through the network stack and into the next com-
partment. Using authenticated encryption, such as TLS, mitigates this.

With authenticated encryption, you can ensure that only messages from
a trusted endpoint, such as your cloud server, reach your code. The TLS stack
checks each incoming message for cryptographic integrity and forwards the
plaintext to you only after it has been decrypted.

Using the TLS stack makes it a critical part of the attack surface. For-
tunately, it has a very narrow interface with the TCP/IP stack. Internally,
BearSSL uses a ring bưer for messages that are ready to be sent and those
awaiting decryption. Before calling the send or receive functions in the TCP/
IP stack, the TLS compartment removes all permissions except load or store
(for send and receive, respectively) and sets the bounds to exactly the re-
quired amount. Removing the global permission protects the TLS stack from
time-of-check-to-time-of-use (TOCTOU) attacks by guaranteeing that the
TCP/IP compartment cannot capture the bưer for longer than the duration
of the call. Similarly, removing permissions and bounding the pointers to
the bưers ensures that no data can leak to the TCP/IP compartment and it
cannot overwrite anything.

Beyond this, the TLS compartment has no global state. All state associated
with a TLS connection is stored in the connection object, exposed as a sealed
capability. This means that two concurrent calls into the TLS compartment
for di̛erent TLS connections have no shared state, giving ̓ow isolation. An

11.5. Securing connections with TLS

203

attacker who compromises one TLS connection cannot use this to attack an-
other.

When you communicate with a remote server via TLS, you have to identify
the server in two ways. As with unencrypted connections, you must provide
a host name that can bemapped to a network address. Additionally, you need
to provide a TLS certȋcate to identify the remote host.

A TLS certȋcate is public key alongwith somemetadata describingwhat it
can be used for andwhen it is valid. Each TLS certȋcate also has an associated
private key, which is (or, at least, should be) kept secret. If you sign something
with the private key, someone else can use the certȋcate to validate that it
really was signed by you.

In the simplest case, TLS can use a single certȋcate. You generate the pair
of this certȋcate and its private key and embed the certȋcate on your de-
vice. This is a dangerous practice because there is no possible way of revoking
the certȋcate if the key is compromised. The key must be in memory on the
server that the device connects to and so is vulnerable to attack.

TLS certȋcates can also be arranged in certȋcate chains, where each cer-
tȋcate is signed by the private key associated with the next certȋcate in the
chain. The root of a certȋcate chain is usually signed by a certȋcate authority
(CA).

With a certȋcate chain, you can store a certȋcate on the device that does
not correspond to the private key on the server, but which can still be used
to verify that key. It is quite common for the server to have a very short-lived
certȋcate, generated every week, so that if the key is compromised the asso-
ciated certȋcate expires after a short amount of time and an attacker has a
narrowwindow to use it. This requires your device to hold a certȋcate that it
trusts will appear somewhere further up the chain. The set of trusted certȋ-
cates is referred to as your trust anchors. Any certȋcate signed with the key
corresponding to one of your trust anchors is considered valid. This property
is transitive, so any number of certȋcates can exist between the one corre-
sponding to the server's private key and the one that you hold. This provides
a lot of ̓exibility, at the cost of computational power. Verifying a certȋcate
chain is very fast on a multi-gigahertz machine with wide vector units but
can be slow (a second or longer of CPU time) on an embedded device.

If you control the remote server then you already have the .pem ̑le that
contains the certȋcate. If you are connecting to a server that someone else
controls then you need to extract it ̑rst, or include a large set of trusted
anchors. Modern web browsers do the latter, but the certȋcate bundle is

11. Networking

204

Most of the network stack APIs are intended to hide the exact
implementations that we use. For example, we may wish to re-
place the FreeRTOS TCP/IP compartment's codewith something
designed for CHERIoT, perhaps written in a safe language. The
TLS compartment currently leaks the fact that it uses BearSSL
at the API level, by exposing trust anchors in BearSSL's internal
format. This will be addressed in a future version.

larger than most embedded platforms would like. Fortunately, you can use
the openssl command to connect to a server and report the certȋcate chain.
Try this for example.com on the HTTPS port:
$ openssl s_client -connect example.com:443 -showcerts </dev/null
Connecting to 2606:2800:21f:cb07:6820:80da:af6b:8b2c
CONNECTED(00000005)
depth=2 C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert
Global Root G2
verify return:1
depth=1 C=US, O=DigiCert Inc, CN=DigiCert Global G2 TLS RSA SHA256
2020 CA1
verify return:1
depth=0 C=US, ST=California, L=Los Angeles,
O=Internet Corporation for

Assigned Names and Numbers, CN=www.example.org
verify return:1

The ̑rst bit of the output shows the certȋcate chain. The ̑rst certȋ-
cate is the DigitCert Global Root G2, a certȋcate that the DigitCert CA uses
to sign their own signing certȋcates. This certȋcate is the root that you
are expected to deliver out of band. Typically, your openssl install will have
some system-provided root certȋcates that include this one. This certȋcate
is valid from August 2013 to January 2038. It is probably safe to use with your
device.

The lifetime is longer thanmost embeddeddevices last. TheCA claims (and
their auditors support the claim) that this certȋcate is stored securely and
is used only to sign the intermediate certȋcates that are used to sign keys
for clients. Information about the intermediate certȋcate, DigiCert Global G2
TLS RSA SHA256 2020 CA1, shows up later in the output:
1 s:C=US, O=DigiCert Inc, CN=DigiCert Global G2 TLS RSA SHA256

2020 CA1
i:C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert Global

Root G2
a:PKEY: rsaEncryption, 2048 (bit); sigalg: RSA-SHA256
v:NotBefore: Mar 30 00:00:00 2021 GMT; NotAfter: Mar 29 23:59:59

2031 GMT

11.5. Securing connections with TLS

205

This expires in six years at the time of writing this book, so it might seem
safe to use as a trust anchor (for now). Unfortunately, this is not the case.
Although this certȋcate is valid for another six years, there's no guarantee
that this intermediate certȋcate will be the one used to sign the certȋcate
for example.com next time. The certȋcate that the site operator created is
the ̑rst to be displayed in the output:
Certificate chain
0 s:C=US, ST=California, L=Los Angeles, O=Internet Corporation for

Assigned Names and Numbers, CN=www.example.org
i:C=US, O=DigiCert Inc, CN=DigiCert Global G2 TLS RSA SHA256

2020 CA1
a:PKEY: rsaEncryption, 2048 (bit); sigalg: RSA-SHA256
v:NotBefore: Jan 30 00:00:00 2024 GMT; NotAfter: Mar 1 23:59:59

2025 GMT
This is valid for one year and will probably have expired by the time that

you read this. Note that the lifetime of the certȋcate is not the same as the
lifetime of the key pair. You can easily generate a new certȋcate signing re-
quest for the same key and have a newly signed certȋcate valid for another
year (or just for a week) using the same key.

If we wanted to use either of the certȋcates that are directly sent by the
server then we could simply copy the bit between BEGIN CERTIFICATE and
END CERTIFICATE lines into a ̑le. Unfortunately, we don't so we have to go
to the DigiCert web site and download the correct certȋcate.

Once you have the certȋcate, BearSSL's command-line tool can convert
it into a form that the library expects. The command-line tools are not built
by the CHERIoT network stack, so you will need to either build them from
the copy of BearSSL in network-stack/third_party/BearSSL or install them
from your operating system's package manager. You can then convert the
certȋcate ̑le into a header that contains the trust anchor that you need:
$ brssl ta DigiCertGlobalRootG2.crt.pem > DigiCertGlobalRootG2.h
Reading file 'DigiCertGlobalRootG2.crt.pem': 1 trust anchor

Once you have the trust anchors and the hostname and port, you have ev-
erything that you need to be able to create a TLS connection. The current
implementation of TLS in the CHERIoT network stack uses BearSSL, which
avoids heap allocation. Unfortunately, this includes all of the big-number
arithmetic, which causes it to require very large stacks. Listing 90 shows the
stack for this example: it is just under 8 KiB.

This thread is now able to connect to a TLS server without running out of
stack space. Recall from the certȋcates earlier that each has a period when it
is valid. The TLS stack will check that the certȋcate is currently valid, which
requires that the TLS stack has access to the current time. This means that

11. Networking

206

https://www.digicert.com/kb/digicert-root-certificates.htm

42 {
43 compartment = "https_example",
44 priority = 1,
45 entry_point = "example",
46 -- TLS requires *huge* stacks!
47 stack_size = 6144,
48 trusted_stack_frames = 6
49 },

Lཥၑၣཥ࿏༥ 90. Build system code for a thread that will use TLS.
[from: examples/tls/xmake.lua]

you need some code that is similar to the SNTP example at the start. After
initialising the network stack, you need to synchronise the clock, as shown in
Listing 91.

32 network_start();
33 Timeout t{MS_TO_TICKS(1000)};
34 // SNTP must be run for the TLS stack to be able to check
35 // certificate dates.
36 while (sntp_update(&t) != 0)
37 {
38 Debug::log("Failed to update NTP time");
39 t = Timeout{MS_TO_TICKS(1000)};
40 }

Lཥၑၣཥ࿏༥ 91. Setup required before a TLS connection is possible.
[from: examples/tls/https.cc]

Connecting to a TLS server is very much like connecting to a TCP server.
Compare Listing 85, which established an unencrypted connection, to Listing
92, which creates an encrypted connection. Aside from the connect function
name, the only di̛erence is that the TLS connect function requires the trust
anchors. This is an intentional API choice: CHERIoT aims to be secure by de-
fault, so it should be as easy to create secured connections as it is to create
insecure ones.

The return value from the tls_connection_create call is either a valid
sealed capability, or null. In the future, it will use a negated error code in the
untagged capability to report failure. Currently, the only failure that will be
reported as a non-null capability is -ECOMPARTMENTFAIL, which will occur if
there is a crash in the TLS compartment. If you did not provide a large stack
(as in Listing 90) then you may see this result. Try reducing the stack size to
4 KiB and you will see failure like this in the output:

11.5. Securing connections with TLS

207

45 Timeout unlimited{UnlimitedTimeout};
46 auto tlsSocket = tls_connection_create(
47 &unlimited,
48 TEST_MALLOC,
49 STATIC_SEALED_VALUE(ExampleComTLS),
50 TAs,
51 TAs_NUM);
52 if (!CHERI::Capability{tlsSocket}.is_valid())
53 {
54 Debug::log("Failed to connect. Error: {}",
55 -static_cast<int32_t>(
56 reinterpret_cast<intptr_t>(tlsSocket)));
57 }

Lཥၑၣཥ࿏༥ 92. Connecting to a remote server with TLS. [from: examples/tls/https.cc]

HTTPS Client: Failed to connect. Error: 1
HTTPS Client: TLS socket: 0xffffffff (v:0 0xfffffe00-0xfffffe00
l:0x0 o:0x0 p: - ------ -- ---)

Note that the returned capability for this does not expose the socket. The
TLS compartment owns the socket on behalf of the caller. This demonstrates
the value of capability delegation. The TLS compartment takes the caller's mal-
loc capability as an argument and can subsequently forward it to the TCP/IP
compartment to allocate the socket. This encapsulation means that it is im-
possible for the caller to accidentally send data over the socket unencrypted.

This example implements a minimal HTTP client to demonstrate sending
and receiving data over TLS. Do not use this HTTP client in production, it does
no error checking and ignores most HTTP headers. The send code is shown in
Listing 93. As with the underlying TCP send call, the TLS send call may send
less than the requested amount of data. This code is therefore called in a loop,
which will try to sendmore of the bưer if only some is sent successfully. The
echo server did not need to handle this case because it only ever sent individ-
ual bytes and provided an unlimited timeout, so either the byte entered the
TCP socket's send queue or the caller blocked.

This is unnecessary for the example because the amount of sent data is
smaller than the TLS socket's internal bưer size so the loop will never exe-
cute, but you can force it to by adding additional headers. Internally, the TLS
stack needs to assemble a complete message and then send it. The message
may need to contain padding if it is too small, so the underlying APIs provide
an explicit ̓ush. CHERIoT's wrapper aims to be easy for the common case and
so automatically ̓ushes after a send. If this is not what youwant, you are free
to extend the source code.

11. Networking

208

69 while (sent < toSend)
70 {
71 size_t remaining = toSend - sent;
72
73 ssize_t sentThisCall =
74 tls_connection_send(&unlimited,
75 tlsSocket,
76 &(message[sent]),
77 remaining,
78 0);
79 Debug::log("Sent {} bytes", sentThisCall);
80
81 if (sentThisCall >= 0)
82 {
83 sent += sentThisCall;
84 }
85 else
86 {
87 Debug::log("Send failed: {}", sentThisCall);
88 break;
89 }
90 }

Lཥၑၣཥ࿏༥ 93. Sending data over a TLS connection. [from: examples/tls/https.cc]

Receiving the response data is almost identical to receiving unencrypted
data. The call shown in Listing 94 directlymirrors the TCPAPI fromListing 86.
The only di̛erence is that you can trust that the data has not been tampered
with in-̓ight (unless the TLS compartment is compromised).

101 auto [received, buffer] =
102 tls_connection_receive(&unlimited, tlsSocket);

Lཥၑၣཥ࿏༥ 94. Receiving data over a TLS connection. [from: examples/tls/https.cc]

⚠

The threat model for the TLS compartment is directed to-
wards the TCP/IP stack as themain adversary. It implicitly trusts
the caller for availability. You can almost certainly crash the TLS
compartment if you call it with insu̕cient stack, insu̕cient
trusted stack, and so on. If you do, you will not impact other TLS
̓ows and the ̓ow that you will impact is allocated from your
own heap quota, so you can only attack yourself doing this.

11.5. Securing connections with TLS

209

11.6. Communicating with an MQTT server
A lot of IoT applications use MQTT (which doesn't stand for anything and
isn't a message queue) as a publish-subscribe protocol for messaging. MQTT
exposes an abstraction of a tree of topics,where clients can subscribe to topics
and publish new values to that topic. When a client publishes a message on
a topic, a copy is sent to every client that has subscribed to that topic. The
protocol supports multiple levels of quality of service (QoS):
At most once

The serverwill attempt to deliver themessage. If delivery fails, neither
the client nor the server will do any additional steps.

At least once
The server will attempt to deliver the message and wait for an ac-
knowledgement. If delivery fails, the server will try again until the
message is acknowledged.

Exactly once
The server will attempt to deliver the message and use a two-way
handshake to ensure that the message arrives exactly once.

The QoS levels are intended to work even if the network breaks. Clients con-
nect with a unique 23-character identȋer. If a client is already connected
with the same identȋer, new clients may not connect with the same identi-
̑er but theymay reconnect. A reconnecting client will disconnect the original
and take ownership of the ID and any messages with higher QoS levels that
were destined for the original will be sent to the new owner. The CHERIoT
MQTT library contains a helper for creating random client IDs, shown in List-
ing 95.

96 Debug::log("Generating client ID...");
97 constexpr std::string_view clientIDPrefix{"cheriotMQTT"};
98 // Prefix with something recognizable, for convenience.
99 memcpy(clientID.data(),
100 clientIDPrefix.data(),
101 clientIDPrefix.size());
102 // Suffix with random character chain.
103 mqtt_generate_client_id(
104 clientID.data() + clientIDPrefix.size(),
105 clientID.size() - clientIDPrefix.size());

Lཥၑၣཥ࿏༥ 95. Creating a client ID to use with MQTT. [from: examples/mqtt/mqtt.cc]

11. Networking

210

The CHERIoT MQTT interface doesn't support unencrypted connections.
Connecting to a server requires everything that you needed for a TLS con-
nection. This example is using the Mosquitto public MQTT test server. This
server is intended for demos and is not always reliable. If the demo doesn't
work, check their web interface to see if it is down.

The mqtt_connect call to connect to the server is shown in Listing 96.
This API takes quite a lot of arguments. The ̑rst few are familiar from pre-
vious connection APIs: they provide the timeout, the allocation capability,
and the connection capability. The next two are callbacks for publish mes-
sages (someone has published to a node that you subscribed to) and acknowl-
edgement messages (a message that you sent has been acknowledged by the
server). Next come the trust anchors, as we saw in Listing 92. The function
then takes the sizes for some internal bưers and ̑nally the client ID.

This example omits the last parameter, which has a default value of false
in C++. Setting this to true will cause the library to reconnect, rather than
connecting, to the MQTT server.

109 Debug::log("Connecting to MQTT broker...");
110 auto handle =
111 mqtt_connect(&t,
112 STATIC_SEALED_VALUE(mqttTestMalloc),
113 CONNECTION_CAPABILITY(MosquittoOrgMQTT),
114 publishCallback,
115 ackCallback,
116 TAs,
117 TAs_NUM,
118 networkBufferSize,
119 incomingPublishCount,
120 outgoingPublishCount,
121 clientID.data(),
122 clientID.size());
123
124 if (!Capability{handle}.is_valid())
125 {
126 Debug::log("Failed to connect.");
127 return;
128 }

Lཥၑၣཥ࿏༥ 96. Connecting to an MQTT broker. [from: examples/mqtt/mqtt.cc]

As with other networking APIs, all of the state associated with this con-
nection is allocated from the caller's quota. This includes the TLS and TCP/
IP state that is allocated indirectly. Similarly, the result is a sealed capability

11.6. Communicating with an MQTT server

211

https://test.mosquitto.org/sys/ssl.html

that encapsulates the state of the connection. This includes a sealed capabil-
ity to the TLS state, which includes a sealed capability to the TCP socket state.
TheMQTT, TLS, and TCP states are visible only to the compartment that owns
each of them.

Once you have connected to an MQTT broker, you can send publish and
subscribe messages and invoke the run loop to process incoming messages.
This example ̑rst subscribes to a topic, in Listing 97.

136 ret = mqtt_subscribe(&t,
137 handle,
138 1, // QoS 1 = delivered at least once
139 testTopic.data(),
140 testTopic.size());
141 Debug::Assert(
142 ret >= 0, "Failed to subscribe, error {}.", ret);

Lཥၑၣཥ࿏༥ 97. Subscribing to an MQTT topic. [from: examples/mqtt/mqtt.cc]

The return value will be either a negative error code or a non-negative
packet ID. We don't care about the packet ID in this example, so simply assert
that we didn't see an error.

The server will send a reply message to acknowledge the subscription.
When you call mqtt_run, it will process incoming messages and invoke the
relevant callbacks. The call is shown in Listing 98.

148 while (ackReceived == 0)
149 {
150 t = Timeout{MS_TO_TICKS(1000)};
151 ret = mqtt_run(&t, handle);
152 Debug::Assert(
153 ret >= 0,
154 "Failed to wait for the SUBACK, error {}.",
155 ret);
156 }

Lཥၑၣཥ࿏༥ 98. Waiting for acknowledgement after subscribing to an MQTT topic.
[from: examples/mqtt/mqtt.cc]

The callbacks that mqtt_run invokes are the ones that were passed in
Listing 96. These are CHERIoT cross-compartment callbacks. The one for ac-
knowledgements is shown in Listing 99. Thiswill run in the compartment that
dȇned it, invisible to the MQTT compartment, and on a new trusted stack ac-
tivation record. This example callback is not written defensively. A buggy (or
malicious) MQTT compartment could pass invalid pointers that would cause

11. Networking

212

Documentation for the mqtt_run function
int mqtt_run(Timeout * t, MQTTConnection mqttHandle)

Fetch ACK and PUBLISH notȋcations on a given MQTT connection,
and keep the connection alive.
This function will invoke the callbacks passed to mqtt_connect. The
connection object is protected by a recursive mutex, so these call-
backs can call additional publish and subscribe functions. If doing so,
care must be taken to ensure that the bưer is not exhausted. Calling
mqtt_run from a callback is not supported.
The return value is zero if notȋcations were successfully fetched, or
a negative error code.
The negative values will be errno values:

• -EINVAL: A parameter is not valid.
• -ETIMEDOUT: The timeout was reached before notȋcations
could be fetched.

• -ECONNABORTED: The connection to the broker was lost. The
client should now call mqtt_disconnect to free resources as-
sociated with this handle.

• -EAGAIN: An unspecȋed error happened in the underlying
coreMQTT library. Try again.

a trap. If this happens, the switcher will unwind the trusted stack out of the
callback, as if the callback simply returned early.

Running the example to this point should give output like this:
MQTT example: Generating client ID...
MQTT example: Connecting to MQTT broker...
MQTT example: Connected to MQTT broker!
MQTT example: Subscribing to test topic 'cheriot-book-example'.
MQTT example: Now fetching the SUBACK.
MQTT example: Got an ACK for packet 0x1

Next, the example will publish amessage on the same topic andmake sure
that it is received. The publish part is shown in Listing 100. As with the sub-
scribe call, this returns a negative error code or a non-negative packet num-
ber.

11.6. Communicating with an MQTT server

213

65 void __cheriot_callback ackCallback(uint16_t packetID,
66 bool isReject)
67 {
68 Debug::log("Got an ACK for packet {}", packetID);
69 if (isReject)
70 {
71 Debug::log(
72 "However the ACK is a SUBSCRIBE REJECT notification");
73 }
74 ackReceived++;
75 }

Lཥၑၣཥ࿏༥ 99. Callback for acknowledging MQTT messages.
[from: examples/mqtt/mqtt.cc]

164 ret = mqtt_publish(
165 &t,
166 handle,
167 1, // QoS 1 = delivered at least once
168 testTopic.data(),
169 testTopic.size(),
170 static_cast<const void *>(testPayload.data()),
171 testPayload.size());
172 Debug::Assert(
173 ret >= 0, "Failed to publish, error {}.", ret);

Lཥၑၣཥ࿏༥ 100. Publishing to an MQTT topic. [from: examples/mqtt/mqtt.cc]

Publishing the message will trigger two messages from the server. There
will be an acknowledgement of the publish and, because the example is sub-
scribed to this topic, it will also receive the publish notȋcation. The latter
will be sent to the callback in Listing 101, which logs the received message.

49 void __cheriot_callback
50 publishCallback(const char *topicName,
51 size_t topicNameLength,
52 const void *payload,
53 size_t payloadLength)
54 {
55 Debug::log(
56 "Got a PUBLISH for topic {}: {}",
57 std::string_view{topicName, topicNameLength},
58 std::string_view{static_cast<const char *>(payload),
59 payloadLength});
60 publishReceived++;
61 }

Lཥၑၣཥ࿏༥ 101. Callback for receiving published MQTT messages.
[from: examples/mqtt/mqtt.cc]

11. Networking

214

Running to this point should give you output like the following:
MQTT example: Publishing a value to test topic 'cheriot-book-
example'.
MQTT example: Now fetching the PUBACK and waiting for the publish
notification.
MQTT example: Got a PUBLISH for topic cheriot-book-example:
Cheriots of fire!
MQTT example: Got an ACK for packet 0x2

The demo will then wait for four more messages on the same topic. If you
happen to run this demo at the same time as other people, you might see
them. Alternatively, if you install the command-line tools that come with
Mosquitto, you can send a message from the command line:
$ mosquitto_pub -h test.mosquitto.org
-t cheriot-book-example
-m 'My name is David'
This will then show up as:

MQTT example: Got a PUBLISH for topic cheriot-book-example: My name
is David

Don't put anything secret in themessage, it will go to anyone running this
demo or anyone observing the public test server.

Finally, the demo disconnects. This is often unnecessary. Most IoT devices
will simply remain connected for their entire operation. They will explicitly
reconnect if the connection drops but never disconnect explicitly.

226 ret = mqtt_disconnect(
227 &t, STATIC_SEALED_VALUE(mqttTestMalloc), handle);
228 Debug::Assert(
229 ret == 0, "Failed to disconnect, error {}.", ret);

Lཥၑၣཥ࿏༥ 102. Gracefully disconnecting from an MQTT server.
[from: examples/mqtt/mqtt.cc]

This function gracefully disconnects, allowing the server to clean up all
state associated with the current connection. It can fail, for example by run-
ning out of memory to hold the disconnection messages.

11.7. Enforcing network access policies
The network stack comes with a network_stack.rego ̑le that provides
helpers for inspecting the state of the network stack. You pass this as an
argument to the --module (or -m) ̓ag for cheriot-audit. For the rest of this
section, we'll use cheriot-audit to inspect and audit the Section 11.6 exam-
ple. From the examples/mqtt directory, you will need to run a command like
this:

11.7. Enforcing network access policies

215

$ cheriot-audit -m path/to/network-stack/network_stack.rego \
-b path/to/sdk/boards/sonata.json \
-j build/cheriot/cheriot/release/mqtt.json \
-q {query}
This assumes that cheriot-audit is in your path. If it is not, provide the

full path, for example /cheriot-tools/bin/cheriot-audit in the dev con-
tainer. The ̑rst two arguments need to be paths to wherever the network
stack and CHERIoT RTOS sources are located. The -j ̓ag should be copied as-
is, this ̑nds the JSON ̑le that the linker created with the audit report for the
̑rmware image. Finally, you will provide a query for the -q, which will be
di̛erent as you work through the examples.

If you want to actually read the JSON output, you will ̑nd that piping it to
jq is helpful, which will pretty-print (and colour) the output.

If you're copying the Rego queries to the command line,make
sure that you quote them. Placing the query text in single quotes
should work for all of the examples in this section.

Let's start with a query that invokes one of the more complex rules. This
will ̑nd every software-dȇned capability in the ̑rmware image that is
sealed with the type for connection capabilities, and then decodes them into
JSON objects. Try this query:
data.network_stack.all_connection_capabilities

You should see the following JSON as the result:
[

{
"capability": {

"connection_type": "UDP",
"host": "pool.ntp.org",
"port": 123

},
"owner": "SNTP"

},
{

"capability": {
"connection_type": "TCP",
"host": "test.mosquitto.org",
"port": 8883

},
"owner": "mqtt_example"

}
]

11. Networking

216

This tells you that there are two compartments that canmake sockets. The
MQTT example compartment can make a TCP connection to the Mosquitto
test server on port 8883. The SNTP compartment can create a UDP socket and
open a ̑rewall rule that allows it to communicate with the public NTP pool
on thewell-knownNTPport. TCP is connection-oriented so the network stack
implicitly opens ̑rewall rules on connection. UDP is connectionless so there
are explicit APIs for opening ̑rewall rules that allow a UDP host to communi-
cate with explicit peers. The connection capabilities are similar in both cases
but their use is di̛erent.

Remember that capabilities can be delegated. The MQTT example com-
partment does not open a socket directly, it is passing this capability to the
MQTT compartment, which passes it to the TLS compartment, which then
passes it to the network API compartment to access the socket. You can vali-
date this with another query:
data.compartment.compartments_calling_export_matching("NetAPI",
`network_socket_connect_tcp(.*`)

Rego uses double quotes for normal strings. These follow sim-
ilar escaping rules to C so, for example, "\t" is a string con-
taining a tab character. You can avoid this processing by using
backticks to designate a raw string. The Rego raw `\t` is a string
containing a backslash and the letter 't'. It's common to use raw
strings when constructing regular expressions to avoid needing
to escape backslashes.

The report contains the mangled name of the export, which includes the
types. This query uses a regular expression to match anything with the func-
tion name followed by an open bracket, so will catch any overload of the func-
tion (this function has no overloads but specifying all of the arguments is
tedious). The output should look like this:
[

"TLS"
]

The only compartment that creates TCP connections is the TLS compart-
ment. This is interesting but not very useful.

The policy that we actually want is that no unencrypted data leaves the
device. Theway to express that is that nothing sends data over a socket except
via the TLS compartment. This query is very similar to the last one:

11.7. Enforcing network access policies

217

data.compartment.compartments_calling_export_matching(
"TCPIP",
`network_socket_send(.*`)
And, again, tells you that only the TLS compartment is sending data:

[
"TLS"

]
If you remember the result of the ̑rst query, this might be a surprise. Did-

n't the SNTP compartment also have a capability that allows it to connect to
the network? SNTP doesn't run over TLS, so what's happening here?

Youdon't sendUDPdatawith network_socket_send, you send itwith net-
work_socket_send_to. This requires another variant of the same query:
data.compartment.compartments_calling_export_matching(
"TCPIP",
"network_socket_send_to.*")
And now that we see that the only compartment sending data over UDP is

the SNTP compartment:
[

"SNTP"
]

Now we can think about ways that a compartment might be able to ex̑l-
trate data with this. First, let's see what this compartment exports:
input.compartments.SNTP.exports

This compartment exports a single symbol, which takes a single Timeout
argument:
[

{
"export_symbol": "__export_SNTP__Z11sntp_updateP7Timeout",
"exported": false,
"interrupt_status": "enabled",
"kind": "Function",
"register_arguments": 1,
"start_offset": 208

}
]

This could potentially leak data via the timeout. If you are concerned about
this, you canwrap the calls to this function in another compartment and audit
the source of that.

There's another way that you might leak data to the SNTP compartment:
via pre-shared objects. You can ask if the SNTP compartment has access to
any pre-shared objects with the following query:
data.compartment.shared_object_imports_for_compartment(
input.compartments.SNTP)
This tells you that, yes, it does:

11. Networking

218

[
{

"kind": "SharedObject",
"length": 24,
"permits_load": true,
"permits_load_mutable": false,
"permits_load_store_capabilities": false,
"permits_store": true,
"shared_object": "sntp_time_at_last_sync",
"start": 1237648

}
]

This can't contain capabilities, but it is readable so if another compart-
ment has write access to this object then it could communicate data to the
SNTP compartment. We can check that with an allow-list query:
data.compartment.shared_object_writeable_allow_list(
"sntp_time_at_last_sync",
{"SNTP"})
This takes the name of a shared object as the ̑rst argument and a set of

compartments thatmay holdwriteable capabilities to it as the second. Unlike
the prior queries, this does not expand to a complex JSON response, it is a
single JSON value: true.

This is one of the checks performed by the valid rule in the network_s-
tack package. This takes the network interface as its argument. On Sonata,
the Ethernet device is accessed via the second SPI channel. You can check the
integrity of the network stack with the following query:
data.network_stack.valid(spi2)

Again, this should simply evaluate to true. You can use this, along with
the other things that you've seen in this section, to build a policy for this
example. The start is shown in Listing 103. This is the head of a Rego rule
that is parameterised on the device name and forwards to the network stack's
validity rule. The network stack checks access for the shared object.

8 # Rule for defining
9 valid(ethernetDevice) {
10 # Check the integrity of the network stack
11 data.network_stack.valid(ethernetDevice)
12

Lཥၑၣཥ࿏༥ 103. The start of the Rego policy for the MQTT example.
[from: examples/mqtt/mqtt.rego]

Next, the policy checks that there are exactly two connection capabilities
and that they are the two thatwe expect. This is shown in Listing 104. Thȇrst

11.7. Enforcing network access policies

219

check uses the count operator to ensure that the length of the array contain-
ing all capabilities is two. The next two checks are more interesting because
they use the fact that Rego expressions include JSON. Each of these starts with
a JSON object literal for the capability that we expect to ̑nd (the one that
we saw earlier using cheriot-audit for introspection) and then uses the in
operator to check that this object is part of the array.

JSON is tree-structured data with a small number of primitive types so it is
easy to do exact equality comparisons on arbitrary JSONdata. The in operator
uses this to operate over a collection (set, array, or object) and returnwhether
the collection contains the requested value. This is not string comparison.
The indentation in this example is purely for readability.

15
16 # Check that only the authorised set of remote hosts are
17 # allowed
18 count(data.network_stack.all_connection_capabilities) == 2
19
20 {
21 "capability": {
22 "connection_type": "UDP",
23 "host": "pool.ntp.org",
24 "port": 123
25 },
26 "owner": "SNTP"
27 } in data.network_stack.all_connection_capabilities
28
29 {
30 "capability": {
31 "connection_type": "TCP",
32 "host": "test.mosquitto.org",
33 "port": 8883
34 },
35 "owner": "mqtt_example"
36 } in data.network_stack.all_connection_capabilities
37

Lཥၑၣཥ࿏༥ 104. Rego rules for restricting output in the MQTT example.
[from: examples/mqtt/mqtt.rego]

Finally, in Listing 105 the rule contains checks for the property that you
saw earlier: no unencrypted data can leave the device. This is implemented
with two allow-list rules, which pass only if the set of allowed compartments
contains every compartment that can call the specȋed set of entry points.

These are all in the mqtt.rego ̑le in the example so you can add -m mqt-
t.rego to your cheriot-audit command line to use them. Now, you can sim-

11. Networking

220

39
40 # Restrict which compartments can send data
41 data.compartment.compartment_call_allow_list(
42 "TCPIP",
43 `network_socket_send\(.*`,
44 { "TLS" })
45 data.compartment.compartment_call_allow_list(
46 "TCPIP",
47 `network_socket_send_to\(.*`,
48 { "SNTP" })
49

Lཥၑၣཥ࿏༥ 105. Rego rules to ensure that no data leaves the device unencrypted for
the MQTT example. [from: examples/mqtt/mqtt.rego]

ply run data.mqtt.valid(spi2) (or data.mqtt.valid(kunyan_ethernet), if
you're using the Arty A7 builds) to check that the ̑rmware image that you've
built from this example complies with the policy.

If you write a similar policy for your real ̑rmware and incorporate it into
your code-signing ̓ow then you can ensure that everything running on your
device has the properties that we've described. If a developer accidentally
leaves an unencrypted debug channel enabled in a release build, for example,
then the policy check will fail. Similarly, if someone adds integration with
another cloud service, you will see the checks fail and need to update the
policy to make sure that it matches your new security goals.

11.8. Understanding TCP/IP-stack reset
CHERIoT provides a lot of out-of-the-box security guarantees simply by re-
compiling code. The FreeRTOS+TCP codebase was audited in 2019 and the
auditors found ten vulnerabilities. Of these, eight were memory-safety bugs
that could either allow arbitrary-code execution or information disclosure.
One was a division by zero, which could cause a trap. The remaining one was
a failure to properly implement DNS, which could allow DNS cache poisoning.

All of these are mitigated by the compartmentalisation model in the
CHERIoT network stack. The DNS attack may still be possible, but very hard
to exploit. The vulnerability was that DNS responses were processed even
if they did not accompany a query so sending a DNS response to the device
would cause it to add the entry to its cache and then not do the DNS query
when it was requested. The CHERIoT ̑rewall drops in-bound DNS packets
except when a DNS request is known to be in ̓ight, so attempting to send
the response to the device early would simply be ignored. An attacker would

11.8. Understanding TCP/IP-stack reset

221

have needed to time the attack for when a DNS response was in ̓ight. An
attacker who can observe DNS requests leave the device and send packets in
response can simply lie in the DNS response (unless DNSSEC is being used)
and could achieve the same result on any system even without the bug. Al-
ternatively, an attacker could ̓ood the device with responses and hope that
theirs arrived ̑rst. This would be likely to succeed but would show up as
unusual tra̕c on any network with some monitoring.

The memory-safety bugs would all have the same impact as the division-
by-zero error. They would cause the hardware to raise a trap, which would
then crash the TCP/IP compartment.

Crashing is usually better than allowing an attacker to gain control of a
device, but it's far from ideal. Crashing a compartment is somewhat better
because it allows other functionality to keep working. For an IoT device, the
Internet bit may be a core part of the functionality. Fortunately, CHERIoT
compartmentalisation provides two benȇts:

• The fault happens before anything can corrupt memory outside ob-
jects that it has access to.

• The blast radius is limited to the compartment boundary and things
that are explicitly shared.

This combination means that it's possible to handle the error and grace-
fully recover. Recovery is complicated in a TCP/IP stack because it is multi-
threaded. A crash may happen in the thread where the ̑rewall provides the
network stack with new packets. It may happen in the thread that handles
TCP/IP retransmissions. It may also happen in any thread that another com-
partment uses to call network-stack functions. When a crash occurs, the ̑rst
thing that the error handler needs to do is ensure that all of the threads ren-
dezvous.

The socket structures that the TCP/IP compartment allocates and exposes
via sealed capabilities are added to a linked list when they're created. When
a crash occurs, the error handler walks this list and places the locks in de-
struction mode. In destruction mode, all threads waiting on a lock will wake
and fail to acquire the lock. This forces any threads that were waiting for the
socket lock to return failure.

Next, the error handler does the same to global locks and begins freeing
memory. This can cause other threads to crash. That's ̑ne because they will
just enter their error handlers as well. The error handlers will check a global
variable that tracks the reset state machine to determine whether they need
to do anything or just exit.

11. Networking

222

When a user calls into the TCP/IP compartment, the API functions incre-
ment a counter of the number of threads that are present. This is then decre-
mented in the error handler, or if they gracefully exit. When it reaches zero,
the error handler knows that reset is ̑nished.

Other threads may allocate memory during the shutdown process, so the
error handlerwill call heap_free_all several times during the shutdownpro-
cess.

Once everything is deallocated, the error handler increments an epoch
counter. This is a 64-bit counter (so it will never over̓ow in the plausible life-
time of the device).

Every socket structure contains a copy of the epoch counter from when it
was created. If a socket is not currently being used, it will have been removed
from the list, but the memory won't have been freed because memory is al-
located with the caller's quota and not the network stack's. The next time
the socket is used, the send or receive function will compare the epoch of the
socket to the current epoch of the TCP/IP stack. If they di̛er then the socket
belonged to a previous incarnation of the TCP/IP stack. The functionwill sim-
ply report that the connection dropped. This can happen asynchronously,
after reset.

Shutting down the TCP/IP stack is the di̕cult part, but not the part that
is useful to users. The next step is to restart it. First, the error handler resets
all of the global variables to their initial states (except the epoch). Next, it
resumes the IP thread from its initial state and reruns initialisation. Most of
the time is spent waiting for a DHCP lease, the rest of the reset happens very
quickly.

If you want to test this, you can use the network_inject_fault function.
This is not compiled in by default, youmust add --network-inject-faults=y
to your xmake config line. When you call this function, it sets a ̓ag so that
the next incoming packet will have incorrect bounds applied. This will cause
the TCP/IP stack to crash somewhere.

From your perspective, you should simply see a connection-dropped er-
ror. If you've written robust networking code, you're handling this anyway.
Networks are intrinsically unreliable and will sometimes fail for reasons be-
yond your control. When this happens, you need to reconnect.

The TCP/IP compartment crashing is no di̛erent; it will appear as if the
connection dropped. If DHCP is taking its usual amount of time, attempting
to reconnect may fail for a second or two, and will then succeed.

11.8. Understanding TCP/IP-stack reset

223

Documentation for the network_inject_fault function
void network_inject_fault()

Inject a memory-safety bug into the network stack.
This is disabled unless compiled with the network-inject-faults
option.

The failure will be propagated through any of the other compartments
that you're using from the network stack. For example, if you're using MQTT,
the TLS compartment will have a send or receive fail. It will then report that
the TLS session has been disconnected to the MQTT compartment. This, in
turn, will report to you that the MQTT connection has dropped the next time
you call publish, subscribe, or run functions.

Try modifying the MQTT example to handle reconnection if any of the
later functions report disconnection. Remember that MQTT supports recon-
nection (as opposed to connection) to resume an existing connection if the
network went away. Change the timeout for one of the mqtt_run calls and
read a switch or UART to determine when to call network_inject_fault.

You should be able to make the network stack crash repeatedly without
more than intermittent disconnection.

For a more complete example, look at the Hugh the Lightbulb demo. This
is a demo that runs on Sonata and uses an Android app to control the multi-
colour LED on the Sonata board via MQTT. It also uses the monochrome LEDs
to show the network connection state, so you can see each of the stages in the
system:

1. The system has started.
2. The network stack is initialised.
3. The clock is synchronised with NTP time.
4. The connection to the MQTT server is established.
5. The MQTT subscription to the topic for the controller is registered.

If you ̓ip the rightmost DIP switch, it will trigger a crash. The LCD shows a
CPU usage graph at the top and a heap-memory usage graph at the bottom,
as you can see in Figure 7. You'll see a sharp drop in heap usage as all of the
TCP/IP state is freed (and then TLS andMQTT state is freed as their respective
compartments see the failure). Then you'll see a short pause as the TCP/IP

11. Networking

224

https://github.com/CHERIoT-Platform/cheriot-demos/tree/main/HughTheLightbulb

stack recovers its DHCP lease. Next, you'll see a burst of 100% CPU usage as
the TLS session is reestablished.

The whole reset process takes a few seconds, most of which is either wait-
ing for DHCP or reestablishing the TLS connection. During this time, all of
the other demo functionality (updating the LCD display and the other LEDs)
works ̑ne. The failure is contained to the compartment with the bug and the
reset means that other code can continue to be oblivious to this failure.

11.8. Understanding TCP/IP-stack reset

225

CPU Usage

Memory Usage

Subscribed to topic

Connected to MQTT

Got NTP time
Connected to network (DHCP)

Hugh Started
Fཥ༥ၸျໞ 7. The Sonata LEDs and LCD display running the Hugh the Lightbuld

demo.

Chapter 12.
Adding a new board
CHERIoTRTOS uses a JSON̑le to describe the target. At ̑rst glance, this looks
similar to a ̓attened device tree (FDT) source ̑le. Both contain a layout of
memory and locations of devices but the CHERIoT RTOS board description
̑le also contains a lot of information that is useful only at build time, such as
the locations of header ̑les and preprocessor dȇnitions for the platform.

When youwant to create a board support package (BSP) for a newCHERIoT
con̑guration, this is the ̑rst place to start. The CHERIoT RTOS build sys-
tem allows board description ̑les to be specȋed either as names in the
sdk/boards directory or as ̑le paths. Anything that has been contributed to
the CHERIoT RTOS repository will use the former mechanism, anything dis-
tributed separately will use the latter.

12.1. Specifying memory layout
CHERIoTRTOShas to di̛erentiate between three kinds ofmemory in the con-
̑guration:

• Code and read-only global data, which cannot contain pointers to re-
vokable heap memory.

• Globals and stacks, which may contain pointers to revokable heap
memory.

• The heap, which may contain pointers to revokable heap memory and
may itself be revoked.

The allocator is given a capability to the revocation bitmap covering the last
range. The revoker must be con̑gured to include (at least) the latter two in
its scans. The ̑rst category is safe to ignore.

A future version of CHERIoT RTOS may di̛erentiate between
code (and non-capability read-only data) and read-only data so
that the former can be run from memory that does not support
tags and the latter from tag-carrying memory.

The memory layout will put code then globals into memory and then the
heap afterwards. In most systems, there is more code than heap and so, to
reduce costs, not all memory needs to support tags.

Our security guarantees for the shared heap depend on the mechanism
that allows the allocator to mark memory as quarantined. Any pointer to

227

memory in this region is subject to a check (by the hardware) on load: if it
points to deallocated memory, it will be invalidated on load. This mechanism
is necessary only for memory that can be reused by di̛erent trust domains
during a single boot.Memory used to hold globals and code does not require it
so an implementation may save some hardware and power costs by support-
ing these temporal safety features for only a subset of memory. As such, we
require a range of memory that is used for static code and data ('instruction
memory') that is not required to support this mechanism and an additional
range thatmust support this for use as the shared heap ('heap memory'). Im-
plementations may choose not to make this separation and provide a single
memory region. At some point, we expect to further separate the mutable
and immutable portions of instruction memory so that we can support exe-
cute in place (XIP).

Instruction memory is described by the instruction_memory property.
This must be an object with a start and end property, each of which is an
address.

The region available for the heap is described in the heap property. This
must describe the region over which the load ̑lter is dȇned. If its start
property is omitted, then it is assumed to start in the same place as instruc-
tion memory.

The Sail board description has a simple layout:
"instruction_memory": {

"start": 0x80000000,
"end": 0x80040000

},
"heap": {

"end": 0x80040000
},

This starts instructionmemory at the default RISC-Vmemory address and
has a single 256 KiB region that is used for both kinds of memory.

12.2. Exposing MMIO Devices
Each memory-mapped I/O device is listed as an object within the devices
̑eld. The name of the ̑eld is the name of the device and must be an ob-
ject that contains a start and either a length or end property that, between
them, describe the memory range for the device. Software can then use the
MMIO_CAPABILITY macro with the name of the device to get a capability to
that device's MMIO range and can use #if DEVICE_EXISTS(device_name) to
conditionally compile code if that device exists.

The Sail model is very simple and provides only three devices:

12. Adding a new board

228

"devices": {
"clint": {

"start": 0x2000000,
"length": 0x10000

},
"uart": {

"start": 0x10000000,
"end": 0x10000100

},
"shadow" : {

"start" : 0x83000000,
"end" : 0x83001000

}
},

This describes the core-local interrupt controller (clint), a UART, and
the shadow memory used for the temporal safety mechanism (shadow). The
UART, for example, is referred to in source using MMIO_CAPABILITY(struct
Uart, uart), which evaluates to a volatile struct Uart *, giving a capa-
bility to this device.

12.3. Dȇning interrupts
External interrupts should be dȇned in an array in the interrupts prop-
erty. Each element has a name, a number and a priority. The name is used to
refer to this in software and must be a valid C identȋer. The number is the
interrupt number. The priority is the priority with which this interrupt will
be con̑gured in the interrupt controller.

Interrupts may optionally have an edge_triggered property (if this is
omitted, it is assumed to be false). If this exists and is set to true then the
interrupt is assumed to ̑re when a condition ̑rst holds, rather than to re-
main raised as long as a condition holds. Interrupts that are edge triggered
are automatically completed by the scheduler; they do not require a call to
interrupt_complete.

12.4. Controlling hardware features
Some properties dȇne base parts of hardware support. The revoker prop-
erty is either absent (no temporal safety support), "software" (revocation is
implemented via a software sweep) or "hardware" (there is a hardware re-
voker).We expect this to be "hardware" on all real implementations. The soft-
ware revoker exists primarily for the Sail model and the no temporal safety
mode only for benchmarking the overhead of revocation.

12.4. Controlling hardware features

229

If the stack_high_water_mark property is set to true, then we assume the
CPUprovides CSRs for tracking stack usage. This property is primarily present
for benchmarking as all of our targets currently implement this feature.

12.5. Specifying clock speeds
The clock rate is con̑gured by two properties. The timer_hz̑eld is the num-
ber of timer increments per second, typically the clock speed of the chip (the
RISC-V timer is dȇned in terms of cycles). The tickrate_hz specȋes how
many scheduler ticks should happen per second. Ticks were discussed in Sec-
tion 6.3, they are theminimumunit of scheduling. Threads sleep integer num-
bers of ticks. A larger duration here means that a short sleep becomes longer,
a smaller duration means that the scheduler will be invoked more often. If
you have two threads at the same priority then they will be preempted at
this frequency, so a 1,000 Hz tick rate will mean that each runs for 1ms. That
means that the scheduler will run (at least) once every 100,000 cycles on a 100
MHz core. With a 100 Hz tick rate, the scheduler will run once every million
cycles.

Higher tick rates will (usually) give lower latency, lower tick rates will
(usually) give higher throughput.

It is possible to set the tickrate_hz to such a high value that
ticks are shorter than the context-switch time. This will cause
the timer to ̑re as soon as a new thread starts running, which
will prevent forward progress. This is easy to spot because mul-
tithreaded ̑rmware images will fail to run on the board. If you
see no output from multithreaded ̑rmwares, try reducing this
number. For most uses, 100 is a sensible number. This will make
one tick take 10 ms. If you require higher precision for sleeping
(or have high clock speeds) youmaywant something a bit higher.

12.6. Supporting conditional compilation
The defines property specȋes any pre-dȇned macros that should be set
when building for this board. The driver_includes property contains an ar-
ray (in priority order) of include directories that should be added for this
target. Each of the paths in driver_includes is, by default, relative to the
location of the board ̑le (which allows the board ̑le and drivers to be dis-
tributed together). Optionally, it may include the string $(sdk), which will

12. Adding a new board

230

be replaced by the full path of the SDK directory. For example, "$(sdk)/in-
clude/platform/generic-riscv" will expand to the generic RISC-V direc-
tory in the SDK.

The driver headers use #include_next to include more generic ̑les so it
is important to list the directories containing your overrides ̑rst.

12.7. Enabling simulation support
The RTOS has some special behaviour for simulation platforms. If you imple-
ment a simulation-exit driver (or rely on the generic RISC-V one) in a plat-
form-simulation_exit.hh ̑le, the RTOS will exit the simulator after the last
thread has exited.

The short-spin APIs also behave di̛erently in simulation, where timemay
not be real. These treat short sleeps as elapsing immediately.

The fail-simulator-on-error.h header includes an error handler that
is useful for debugging. It logs an error and will exit the simulator (if run in
a simulator) when a CHERI trap occurs. This is useful for trying to determine
where code is failing if you do not have access to a debugger.

These behaviours are all controlled by the simulation property. If simu-
lation is set to true then this board is assumed to be a simulation platform,
opting into these behaviours.

12.8. Running with xmake run

Most of the examples in this book were run with the xmake run command.
This command needs to know how to invoke the simulator or deploy to the
device.

In addition, the run_command property can be the name of a program (or
script) that can either simulate the ̑rmware image or deploy it to a real tar-
get. This will be run from the build directory and will be passed the absolute
path of the ̑rmware image when xmake run is used. The build system will
look for the simulator in the SDK directory and, failing that, in the path. Exact
paths can be provided by using $sdk or $board in the name of the simulator.
These will be expanded to the full path of the SDK or the directory containing
the board description ̑le, respectively.

12.8. Running with xmake run

231

12.9. Creating board variants
Some boards are minor variations on others. For example, the Sonata simula-
tor is identical to the Sonata FPGAplatform, but has a di̛erent run command.

Copying the original board ̑le and creating a variation works, but incurs
a maintenance burden (unless both are generated by some external system).
The build system provides built-in support for this use case. Rather than pro-
viding a .json ̑le for the board, you provide a .patch ̑le. This is a JSON
document that uses JSON Patch to describe a set of changes.

This ̑le must have two top-level nodes. The base node contains the board
to modify. This can be another patch ̑le or a .json ̑le. The patch node con-
tains an array of JSON Patch directives that are executed in sequence.

This is the entirety of the patch ̑le for the Sonata simulator:
{

"base": "sonata-prerelease",
"patch": [

{
"op": "replace",
"path": "/simulation",
"value": true

},
{

"op": "replace",
"path": "/run_command",
"value": "${sdk}/../scripts/run-sonata-sim.sh"

}
]

}
This starts with the Sonata pre-release board ̑le (which tracks the current

in-development version of the Sonata FPGA design) and applies two changes.
The ̑rst sets the simulation property to true, the second replaces the run
command with one that invokes the simulator instead of copying the code to
the FPGA.

12. Adding a new board

232

https://jsonpatch.com

Chapter 13.
Porting from bare metal

If you have existing code that runs happily on bare metal, you may consider
CHERIoT for a variety of reasons, for example:

• You want to add network connectivity and need to isolate network
communication.

• You are consolidating multiple functions from di̛erent microcon-
trollers onto a single device.

• You really love memory safety.
These reasons are often somevariation onneeding to do twoormore things in
di̛erent security contexts on a single device. Thismeans that yourworkloads
are now going to run with their privileges reduced enough that they cannot
interfere (beyond permitted amounts) with each other.

13.1. Replacing a real-time control loop
Control systems often run with a single loop that polls for some input, man-
ages a (potentially very complex) state machine, and sets some output state.
You can get precisely this model by running code in CHERIoT RTOS with in-
terrupts disabled.

A function that has the [[cheriot::interrupt_state(disabled)]] at-
tribute will run with interrupts disabled and has exclusive use of the core
until it yields. You can add this attribute to the entry point for the thread
running your control loop to start with interrupts disabled.

The scheduler will always schedule the highest-priority runnable thread
(or round-robin schedule threads if more than one is runnable at the same
priority). If your thread is the highest priority, it won't be preempted, but in-
terrupts may still ̑re and cause the scheduler to perform some bookkeeping
work. Disabling interrupts and runningwith the highest priority ensures that
a thread is scheduled ̑rst and continues to run for as long as it wants to.

This is a direct replacement of a real-time control loop, but somewhat
misses the point of running an RTOS: no other threads will run.

233

13.2. Yielding
If it makes sense for a control loop to run on amultitasking operating system,
there will be times when it is able to safely yield. Just yielding from a high-
priority thread is not normally su̕cient because it remains the highest-pri-
ority thread and so will be the next to run.

Chapter 6 discusses the various ways for a thread to block. This can be
as simple as sleeping. If a realtime thread sleeps for one tick then another
thread can run, but the next timer interrupt will return control to the real-
time thread (unless another thread is running with interrupts disabled - this
can be prevented via a policy on the linker report).

More commonly, a realtime control loop will want to block until some ex-
ternal event occurs and triggers an interrupt. Section 9.6 describes how to
wait for an interrupt to ̑re.

When an interrupt ̑res, the thread waiting for it will become runnable
and, if it is higher priority than any other thread, will be scheduled immedi-
ately. If the code that yielded had interrupts disabled then interrupts will be
disabled once again on return.

13.3. Replacing direct device access
In bare-metal code for non-CHERI systems, it is common to construct pointers
to memory-mapped devices by either casting an integer to a pointer or by
creating a global that is placed in the correct location via a linker script.

Neither of these works in the CHERIoT model. Instead, you must use the
macros described in Section 9.4 to construct valid capabilities to devices. This
mechanism allows auditing, with a link-time record of which compartments
can access each device.

If your code is using volatile pointers to access device memory then you
should be able to port your code to CHERIoT RTOS by simply changing how
you ̑rst construct those pointers.

13.4. Replacing interrupt service routines
Some bare-metal environments have special attributes for declaring inter-
rupt-service routines and associating them with di̛erent channels. As dis-
cussed in Section 9.6, this kind of mechanism would violate the CHERIoT se-
curity model and is not provided. You can implement your own dispatcher
in a CHERIoT environment by waiting on multiple interrupts with the multi-
waiter APIs (see Section 6.12) and then calling the interrupt routines yourself.

13. Porting from bare metal

234

If interrupts are marked as edge-triggered in the board description then
they are implicitly acknowledged in the interrupt controller by the scheduler.
If not, then youmust explicitly acknowledge them before they can ̑re again.
This model is closer to the implicit masking during an ISR.

⚠
Simply waiting for multiple interrupts and handling them as

they arrive does not allow interrupt handlers to be preempted.
You canwait for di̛erent-priority interrupts on di̛erent-prior-
ity threads, but the threads that handle the lower-priority inter-
rupts must run with interrupts enabled to allow preemption.

13.4. Replacing interrupt service routines

235

Chapter 14.
Porting from FreeRTOS
FreeRTOS is an established real-time operating system with a large deployed
base. It runs on tiny microcontrollers up to large systems with MMU-based
isolation. The CHERIoT platform aims to provide, on small microcontrollers,
stronger security guarantees than FreeRTOS is able to provide on large sys-
tems.

This chapter describes how several concepts in FreeRTOS map to equiva-
lents in CHERIoT RTOS.

The FreeRTOS-Compat directory in include contains a set of headers (in-
cluding FreeRTOS.h) that expose FreeRTOS-compatiblewrappers around var-
ious CHERIoT RTOS services. These allow you to port existing FreeRTOS code
to CHERIoT RTOS with minimal changes. These are not complete, but are ex-
pected to evolve over time.

14.1. Contrasting design philosophies
FreeRTOS is primarily designed around a model with a single trust domain.
The initial targets did not provide any memory protection. You, the author
of an embedded system, were assumed to have control over all components
that you're integrating. Later, MPU support was added, building on top of the
task model. When using an MPU, some tasks can be marked as unprivileged.
These have access to their own stack and up to three memory regions, which
must be con̑gured explicitly.

Even when an MPU exists, the trust model is limited to hierarchical trust.
The system integrator may mark certain tasks as unprivileged, but individ-
ual tasks cannot dȇne more complex trust relationships. Memory safety is
limited to the granularity of an MPU region. For example, the scheduler can
expose message queues as privileged functions, which protects the queue's
internal state from being tampered with by untrusted tasks, but may still
overwrite the bounds of an object in an untrusted task if passed a pointer to
an object that is not large enough to store a complete message.

As a fundamental design principle, FreeRTOS aims to run on many dif-
ferent platforms and provide portable abstractions. This limits the security
abstractions that are possible to implement.

237

In contrast, the CHERIoT platform was created as a whole-system hard-
ware-software co-design project. The hardware is required to provide proper-
ties that the software stack can use to build security policies. The core design
of CHERIoT is motivated by a world in which a developer of an embedded sys-
tem may not have full control over components provided by third parties,
yet must integrate them. It is intended to provide auditing support that al-
lows the integrator to make security claims even when integrating binary-
only components.

This di̛erence manifests most obviously in the fact that FreeRTOS pro-
vides imperative APIs for a number of things that CHERIoT RTOS prefers to
create via declarative descriptions. Auditing a declarative description is eas-
ier than auditing arbitrary Turing-complete imperative code calling privi-
leged APIs.

FreeRTOS starts from a position of sharing by default and has added MPU
support to provide isolation. CHERIoT RTOS starts from a default position of
isolation and provides object-granularity sharing.

FreeRTOS was designed to support adding features to systems that did not
originally use any kind of OS. This is apparent, for example, in how the pro-
grammer interacts with the scheduler. The scheduler is just another service
that the system integrator may choose to use. User code chooses when the
scheduler starts and may choose to stop it for arbitrary periods.

In contrast, CHERIoT RTOS provides a model more familiar to users of
desktop or server systems. The core parts of the RTOS are always available
and provide strong isolation guarantees.

14.2. Replacing tasks with threads and compartments
The FreeRTOS task abstraction is similar to the traditional UNIX process ab-
straction. A task owns a thread and is independently scheduled. It is intended
to be isolated from the rest of the system, though on systems without mem-
ory protection it has access to everything in the address space.

A task in FreeRTOS is roughly the equivalent of a combination of a thread
and a compartment in CHERIoT RTOS. The compartment dȇnes the code and
global data associated with the task. The thread provides the stack and allows
the task to be created.

CHERIoT RTOS threads have one key limitation in comparison to FreeR-
TOS tasks: They cannot be dynamically created. The securitymodel requires a
static guarantee that nomemorymoves between being stackmemory (which
is permitted to hold non-global capabilities) and non-stack (global or heap)

14. Porting from FreeRTOS

238

memory. The trusted stack memory and save area memory should never be
visible outside of the switcher. Without these static properties, the allocator
would be in the TCB for thread and compartment isolation.

As such, there is no equivalent of the FreeRTOS xTaskCreate function.
Threads (and their associated stacks and trusted stacks) must be described up
front in the build system (see Section 6.1). In some cases, dynamically created
threads can be replaced with thread pools, in the same way that coroutines
can.

The compatibility layer exposes xTaskCreate and xTaskCreateStatic as
macros that generate awarning and evaluate to an invalid thread handle. This
is intended to ease porting of code that conditionally uses these APIs.

The best way to replace dynamic thread creation is usually to create the
threads declaratively in the build system. If they need to be started only after
a certain event, then you can wait on a futex (see Section 6.5) and notify that
futex at the point where the original code called xTaskCreate.

14.3. Using thread pools to replace coroutines
The CHERIoT RTOS thread pool (see lib/thread_pool) allows a small num-
ber of threads to be reused. This provides a compartment that has two entry
points. One is a thread entry point that sits andwaits formessages from other
threads, the other is exposed for calls by other compartments and sends a
message to one of the threads in the pool.

This is most commonly used with C++ lambdas via the async wrapper in
thread_pool.h:
async([]() {
// This runs in the caller's compartment but in another thread.

})
This can be used for cooperatively-scheduled work in a similar manner to

stackless coroutines. Each task dispatched to a thread pool will run until com-
pletion on one of the threads allocated to the thread pool. When it returns,
the thread-pool thread will block until another task is available in the queue.

Some of the use cases for dynamic FreeRTOS task creation can be imple-
mented the sameway. Onmemory-constrained systems, dynamic thread cre-
ation can easily exhaust memory for stacks so most systems that depend on
dynamic thread creation do so at di̛erent phases of computation to allow the
stack space to be reused. Pushing these as thread-pool tasks provides similar
behaviour, with each task taking ownership of the (safely zeroed) stack after
the previous one has ̑nished.

14.3. Using thread pools to replace coroutines

239

The CHERIOT RTOS-provided thread pool is very simple. You
may wish to implement something similar using it as an exam-
ple, rather than using it as an ơ-the-shelf component.

14.4. Porting code that uses message bưers
The CHERIoT RTOS message queue APIs (see Section 6.10) are modelled after
the FreeRTOS message queue. In most cases, there is a direct mapping be-
tween the FreeRTOS APIs and the CHERIoT RTOS ones, as shown in Table 4

FreeRTOS API CHERIoT RTOS API
xQueueCreate queue_create

vQueueDelete free

xQueueReceive queue_receive

xQueueSendToBack queue_send

uxQueueMessagesWaiting queue_items_remaining

Tຠྲໞ 4. CHERIoT equivalents of FreeRTOS queue operations

The FreeRTOS-Compat/queue.h header provides wrappers that respect
this mapping. The CHERIoT RTOS APIs provide some additional functionality
that is not present in FreeRTOS so code that does not need to be maintained
in both environments may benȇt from being moved to the native APIs.

This mapping uses the queue library, which is intended for communication
between threads in the same compartment. FreeRTOS code typically assumes
a single trust domain so this is usually what you want when porting. In some
cases, you will split multiple FreeRTOS components into separate compart-
ments. In this case, you will most likely want to use the queue compartment
(see Section 6.10), which isolates the queue state from callers.

For C++ code, the ring bưer in ring_buffer.hhmay be more interesting.
This provides a generic ring bưer that can be specialisedwith di̛erent locks
on the producer and consumer end.

14. Porting from FreeRTOS

240

14.5. Porting code that uses event groups
Aswithmessage queues, the CHERIoT RTOS event queue API wasmodelled on
that of FreeRTOS. As such, there is direct correspondence between the FreeR-
TOS APIs and the equivalent CHERIoT RTOS versions, shown in Table 5.

FreeRTOS API CHERIoT RTOS API
xEventGroupCreate eventgroup_create

vEventGroupDelete eventgroup_destroy

xEventGroupWaitBits eventgroup_wait

xEventGroupClearBits eventgroup_clear

xEventGroupSetBits eventgroup_set

Tຠྲໞ 5. CHERIoT equivalents of FreeRTOS event group operations

The FreeRTOS-Compat/event_groups.h header performs this translation.
The FreeRTOS event queue structure provides a rich set of operations. In

contrast, CHERIoT RTOS aims to provide a small set of core abstractions that
can be assembled into complex systems. A lot of users of the event groups API
could use simpler wrappers around a futex, rather than an event group.

14.6. Adopting CHERIoT RTOS locks
CHERIoT RTOS provides futexes as the building block for most locks. These
can be used to build counting semaphores, ticket locks, mutexes, priority-
inheriting mutexes, and so on. Several of these are implemented in the locks
library and exposed via locks.h (and locks.hh for C++ wrappers).

The FreeRTOS-Compat/semphr.h exposes FreeRTOS-compatible wrappers
for counting semaphores. In FreeRTOS, these are implemented as message
queues with zero-sized messages. In CHERIoT RTOS, they are simply futexes
that store a count. This means semaphore get and put operations are usually
simple atomic operations. The scheduler is not involved unless a thread needs
to block (the semaphore count is zero and a thread tries to do a semaphore-
get operation) or needs to wake waiters (the semaphore value is increased
from zero and there were waiting threads).

14.6. Adopting CHERIoT RTOS locks

241

Unlike FreeRTOS, CHERIoTRTOS exposes di̛erent types for di̛erent lock-
ing primitives if they are incompatible. This catches some API misuse errors
at compile time. For example, FreeRTOS uses SemaphoreHandle_t to repre-
sent semaphores and recursivemutexes. Thesemust be createdwith di̛erent
functions and then locked and unlocked with di̛erent functions, but creat-
ing something as a semaphore and then trying to lock it as a recursive mutex
will compile. In contrast, CHERIoT RTOS exposes these as distinct types and
will fail to compile if you try to pass a semaphore to, for example, recursive-
mutex_trylock.

The FreeRTOS-Compat/semphr.h header provides wrappers for the vari-
ous kinds of FreeRTOS semaphores and mutexes. These expose the FreeRTOS
APIs and wrap all of the relevant CHERIoT RTOS types in a union with a dis-
criminator. This adds a small amount of overhead for dynamic dispatch. Code
that uses only one type of semaphore can avoid this. Each of the underlying
types can be exposed by dȇning one of the following macros before includ-
ing FreeRTOS-Compat/semphr.h (directly, or indirectly via FreeRTOS.h):
CHERIOT_FREERTOS_SEMAPHORE

Expose counting and binary semaphores.
CHERIOT_FREERTOS_MUTEX

Expose non-recursive (priority-inheriting) mutexes.
CHERIOT_FREERTOS_RECURSIVE_MUTEX

Expose recursive mutexes.
Enabling only the subset that you use (which can be done on a per-̑le basis)
will reduce code size and improve performance.

14.7. Building software timers
FreeRTOS provides a timer callback API. This is implemented on top of exist-
ing functionality in the FreeRTOS kernel. CHERIoT RTOS does not yet provide
such an API, but building one is fairly simple.

The structure of such a service is similar to that of the thread pool in lib/
thread_pool, except that each callback has an associated timer. These should
be added to a data structure that keeps them sorted. The thread that runs the
callbacks shouldwait on amessage queue,with the timeout set to the shortest
time timer. If this wakes with timeout, it should invoke the ̑rst __cheriot_-
callback callback function in its queue. If it wakes receiving a message, it
should add the new callback into the set that it has ready.

14. Porting from FreeRTOS

242

There is no generic version of this in CHERIoT RTOS because it is impossi-
ble to implement securely in the general case for a system with mutual dis-
trust. Callbacksmay run for anunbounded amount of time (preventing others
from ̑ring) or untrusted code may allocate unbounded numbers of timers
and exhaust memory. As such, it is generally better to build a bespoke mech-
anism for the specȋc requirements of a given workload.

14.8. Timing out blocking operations
FreeRTOS uses the combination of vTaskSetTimeOutState and xTaskCheck-
ForTimeOut to implement timeouts. These are implemented in the FreeRTOS
compatibility layer. In CHERIoT RTOS, these are subsumed by the Timeout
structure, which contains both the elapsed and remaining number of ticks for
a timeout.

The CHERIoT RTOS design is intended to be trivially composed. Most op-
erations simply forward the timeout structure to a blocking operation in the
scheduler (a sleep of a futex wait). They can query whether the timeout has
expired without needing to query the scheduler, simply by checking whether
the remaining ̑eld of the structure is zero.

14.9. Dynamically allocating memory
FreeRTOS provides a number of di̛erent heap implementations, not all of
which are thread safe. In contrast, CHERIoT RTOS design assumes a safe, se-
cure, shared heap. Various uses of statically pre-allocatedmemory in a FreeR-
TOS system can move to using the heap allocation mechanisms in CHERIoT
RTOS, reducing total memory consumption.

FreeRTOS prior to 9.0 allocated kernel objects from a private heap. Later
versions allow the user to provide memory. The latter approach has the ben-
ȇt of accounting these objects to the caller, but the disadvantage of breaking
encapsulation.

CHERIoT RTOS has an approach (described in Chapter 7) that combines the
advantages of both. Rather than providing memory for creating objects such
as message queues, multiwaiters, semaphores, and so on, the caller provides
an allocation capability. This is a token that permits the callee to allocatemem-
ory on behalf of the caller. The scheduler is not able to allocate memory on
its own behalf, it can allocate memory only when explicitly passed an alloca-
tion capability. It then uses the sealing mechanism to ensure that the caller
cannot break encapsulation for scheduler-owned objects.

14.9. Dynamically allocating memory

243

14.10. Disabling interrupts
FreeRTOS code often uses critical sections to disable interrupts. This may re-
quire some source-code modȋcations. Critical sections in FreeRTOS are used
for two things:

• Atomicity
• Mutual exclusion

Disabling interrupts is the simplest way of guaranteeing both on a single-core
system. FreeRTOS provides two APIs for critical sections: taskENTER_CRITI-
CAL and taskEXIT_CRITICAL, which disable interrupts, and vTaskSuspendAll
and xTaskResumeAll, which disable the scheduler. CHERIoT RTOS is designed
to provide availability guarantees across mutually distrusting components
and so does not permit either unbounded disabling of interrupts or turning
the scheduler ơ. If mutual exclusion is the only requirement then you can
implement these function as acquiring and releasing a lock that is private to
your component. This is how they are implemented in the compatibility layer.
They use distinct locks and these must be dȇned in your compartment, as
shown below:
struct RecursiveMutexState __CriticalSectionFlagLock;
struct RecursiveMutexState __SuspendFlagLock;

A futex-based lock is very cheap to acquire in the uncontended case; it re-
quires a single atomic compare-and-swap instruction. If the hardware doesn't
support atomic operations then the compiler will replace the compare-and-
swap instruction with a function call to a library routine that runs with inter-
rupts disabled. If possible, this approach is preferred for two reasons. First,
it ensures that your component's critical sections do not impede progress of
higher-priority threads. Second, it removes a burden on auditing.

The second use case, atomicity with respect to the rest of the system, re-
quires disabling interrupts. The CHERIoT platform requires a structured-pro-
grammingmodel for disabling interrupts. Interrupt control can be done only
at a function granularity. Hopefully, the code that runs with interrupts dis-
abled is already a lexically scoped block. In C++, you can simply wrap this in a
lambda and pass it to CHERI::with_interrupts_disabled. In C, youwill need
to factor it into a separate function.

For auditing, you may prefer to move the code that runs with interrupts
disabled into a separate library. This lets you separately audit the precise code
that is allowed to run with interrupts disabled, but modify the rest of your
component without constraints.

14. Porting from FreeRTOS

244

14.11. Strengthening compartment boundaries for FreeR-
TOS components
Microsoft did an internal port of the FreeRTOS network stack and MQTT li-
brary. This was not part of the open-source release, but involved very little
code change. Most of the porting e̛ort was done via a FreeRTOS compatibil-
ity header, which provided wrappers around the CHERIoT RTOS inter-thread
communication APIs to make them look like the FreeRTOS equivalents.

FreeRTOS assumes, by default, that all code and globals are shared unless
explicitly protected by anMPU region. When porting FreeRTOS components,
this assumption is broken unless they are in the same compartment. This is
not normally a problem for an initial port, because components are cleanly
encapsulated and do not directly modify the state of other components.

This property does not hold on all RTOS implementations. For
example, several ThreadX components directly manipulate the
internal state of the scheduler, rather than acting via well-de-
̑ned APIs.

Using compartments gives some defence in depth against accidental er-
rors, butmay not provide strong security guarantees. For example, the FreeR-
TOS TCP/IP stack provides a FreeRTOS_socket call that returns a pointer to
a heap-allocated socket structure that encapsulates connection state. Simply
compiling this in a CHERIoT compartment has a few limitations.

First, the structure is allocated out of the network stack's quota. This
means that a caller can perform a denial of service by opening a lot of con-
nections. Fixing this requires an API change to pass an allocation capability
(and possibly a timeout) into the network-stack compartment so that it can
allocate this space on behalf of the caller.

Second, the structure is unprotected. The caller can load and store via the
returned pointer and so can corrupt connection state. This may allow it to
leak the state of connections owned by other components or cause arbitrary
failures.

Finally, there is no notion of access control. That might be ̑ne: if you're
allowing only one compartment to talk to the network stack then you don't
need any kind of authorisation. For more complex uses, you may want to al-
low one component to talk to a command-and-control server and another
component to talk to an update server. Neither of these components should
be able to connect anywhere else, so you probably want to use the software

14.11. Strengthening compartment boundaries for FreeRTOS components

245

capability model to dȇne a static authorisation to make DNS lookups of a
specȋc domain and then have that return a dynamic authorisation that al-
lows connection to that host (or place both the lookup and connection behind
a single interface).

This ismorework than is necessary to simplymake FreeRTOS codework in
a CHERIoT system, but is desirable if you want to take advantage of the secu-
rity properties that CHERIoT RTOS provides over and above what is possible
in FreeRTOS.

14. Porting from FreeRTOS

246

	Preface
	Acknowledgements
	Reading and using examples

	CHERIoT Concepts
	Introducing memory safety
	Understanding CHERI capabilities
	Restricting memory access with compressed bounds
	Decomposing permissions in CHERIoT
	Building memory safety
	Sealing pointers for tamper proofing
	Controlling interrupt status with sentries
	Isolating components with threads and compartments
	Sharing code with libraries
	Auditing firmware images

	The RTOS Core
	Starting the system with the loader
	Changing trust domain with the switcher
	Time slicing with the scheduler
	Sharing memory from the allocator
	Building a C/C++ environment
	Supporting atomic operations
	Adding more standard-library functions
	Exploring other RTOS features

	Getting started writing CHERIoT software
	Getting the RTOS source code
	Using the CHERIoT development container
	Setting up a development environment
	Choosing an implementation
	Building firmware images
	Running firmware images

	C/C++ extensions for CHERIoT
	Exposing compartment entry points
	Passing callbacks to other compartments.
	Exposing library entry points
	Interrupt state control
	Importing MMIO access
	Sealing opaque types
	Manipulating capabilities with C builtins
	Comparing capabilities with C builtins
	Sizing allocations
	Manipulating capabilities with CHERI::Capability

	Compartments and libraries
	Compartments and libraries export functions
	Understanding the structure of a compartment
	Adding compartments to the build system
	Choosing a trust model
	Implementing a safebox
	Building software capabilities with sealing
	Sharing globals between compartments
	Refining trust
	Validating arguments
	Ensuring adequate stack space
	Handling errors
	Writing rich error handlers
	Using scoped error handling
	Conventions for cross-compartment calls

	Communicating between threads
	Defining threads
	Identifying the current thread
	Limiting blocking with timeouts
	Sleeping
	Waiting for events with futexes
	Building locks from futexes
	Inheriting priorities
	Securing futexes
	Using event groups
	Sending messages
	Sending messages between compartments
	Waiting for multiple events

	Memory management in CHERIoT RTOS
	Understanding allocation capabilities
	Creating custom allocation capabilities
	Recalling the memory safety guarantees
	Allocating with an explicit capability
	Using C/C++ default allocators
	Defining custom allocation capabilities for malloc and free
	Allocating on behalf of a caller
	Ensuring that heap objects are not deallocated

	Features for debug builds
	Enabling per-component debugging
	Generating log messages
	Printing custom types
	Asserting invariants
	Using the debug APIs from C

	Writing a device driver
	What is a device?
	Why do device drivers exist?
	Specifying a device's locations
	Accessing the memory-mapped I/O region
	Handling interrupts
	Waiting for an interrupt
	Acknowledging interrupts
	Exposing device interfaces
	Using layered platform includes
	Conditionally compiling driver code

	Auditing firmware images
	Running cheriot-audit
	Using the default cheriot-audit modules
	Exploring a firmware image
	Decoding software-defined capabilities
	Writing a policy

	Networking
	Understanding the structure of the network stack
	Synchronising time with SNTP
	Creating a connected socket
	Creating a listening socket
	Securing connections with TLS
	Communicating with an MQTT server
	Enforcing network access policies
	Understanding TCP/IP-stack reset

	Adding a new board
	Specifying memory layout
	Exposing MMIO Devices
	Defining interrupts
	Controlling hardware features
	Specifying clock speeds
	Supporting conditional compilation
	Enabling simulation support
	Running with xmake run
	Creating board variants

	Porting from bare metal
	Replacing a real-time control loop
	Yielding
	Replacing direct device access
	Replacing interrupt service routines

	Porting from FreeRTOS
	Contrasting design philosophies
	Replacing tasks with threads and compartments
	Using thread pools to replace coroutines
	Porting code that uses message buffers
	Porting code that uses event groups
	Adopting CHERIoT RTOS locks
	Building software timers
	Timing out blocking operations
	Dynamically allocating memory
	Disabling interrupts
	Strengthening compartment boundaries for FreeRTOS components

