CHERIoT

Programmers’ Guide

Safe and secure compartmentalisation

David Chisnall

Contents

Preface 9
Acknowledgements 9
Reading and usingexamples 10
CHERIOT Concepts 13
Introducing memorysafety 13
Understanding CHERI capabilities 15
Restricting memory access with compressedbounds 18
Decomposing permissions in CHERIoT 19
Building memorysafety 23
Sealing pointers for tamper proofing 24
Controlling interrupt status with sentries 26
Isolating components with threads and compartments 26
Sharing code with libraries 27
Auditing firmware images 28
The RTOS Core 29
Starting the system with theloader 29
Changing trust domain with the switcher 31
Time slicing with the scheduler 33
Sharing memory from the allocator 34
Buildinga C/C++environment 35
Supporting atomic operations 0oL 36
Adding more standard-library functions 38
Exploring other RTOS features 38
Getting started writing CHERIOT software 39
Gettingthe RTOS sourcecode v, 39
Using the CHERIOT development container 40
Setting up a development environment 41
Choosing an implementation 44
Building firmware images 45

Contents

Running firmware images
C/C++ extensions for CHERIOT

Exposing compartment entry points L.
Passing callbacks to other compartments.
Exposing library entry points
Interruptstatecontrol
Importing MMIO access v v v v v it i
Sealing opaque types
Manipulating capabilities with C builtins
Comparing capabilities with Cbuiltins
Sizingallocations
Manipulating capabilities with CHERI: :Capability
Compartments and libraries

Compartments and libraries export functions
Understanding the structure of a compartment
Adding compartments to the build system
Choosingatrustmodel
Implementingasafebox,
Building software capabilities with sealing
Sharing globals between compartments
Refiningtrust
Validatingarguments e
Ensuring adequate stackspace,
Handlingerrors
Writing richerrorhandlers,
Using scoped error handling
Conventions for cross-compartmentcalls
Communicating between threads

Definingthreads
Identifying the currentthread

Limiting blocking with timeouts

Sleeping
Waiting for events with futexes
Building locks from futexes
Inheriting priorities
Securing futexXes v v v v i e
Usingevent groups o v vt ittt e e
SeNdiNg MESSAZES » « v v v v v v e e e e e
Sending messages between compartments
Waiting for multipleevents
Memory management in CHERIoT RTOS

Understanding allocation capabilities
Creating custom allocation capabilities
Recalling the memory safety guarantees
Allocating with an explicit capability
Using C/C++ default allocators
Defining custom allocation capabilities for malloc and free
Allocating on behalfofacaller
Ensuring that heap objects are not deallocated
Features for debug builds

Enabling per-component debugging
Generatinglogmessages,
Printing customtypes oo o o
Assertinginvariantso oo
Using the debug APIsfrom C
Writing a device driver

Why do device driversexist?
Specifying a device's locations
Accessing the memory-mapped I/Oregion
Handling interrupts i e

Waiting foraninterrupt L

Contents

Acknowledging interrupts
Exposing device interfaces
Using layered platformincludes
Conditionally compiling drivercode
Auditing firmware images

Running cheriot-audit
Using the default cheriot-auditmodules
Exploring a firmwareimage
Decoding software-defined capabilities
Writingapolicy
Networking

Understanding the structure of the network stack
Synchronising time with SNTP
Creating a connectedsocket
Creating a listeningsocket
Securing connectionswith TLS
Communicating with an MQTT server
Enforcing network access policies,
Understanding TCP/TP-stackreset
Adding a new board

Specifying memory layout. L
Exposing MMIODevices i i i
Defining interrupts
Controlling hardware features
Specifying clockspeeds
Supporting conditional compilation
Enabling simulation support
Running with xmake run L L.
Creatingboard variants
Porting from bare metal

Replacing a real-time controlloop

Yieldingo 234

Replacing direct deviceaccess 234
Replacing interrupt serviceroutines 234
Porting from FreeRTOS 237
Contrasting design philosophies 237
Replacing tasks with threads and compartments 238
Using thread pools to replace coroutines 239
Porting code that uses message buffers 240
Porting code that uses eventgroups 241
Adopting CHERIOTRTOS locks 241
Building software timers, 242
Timing out blocking operations 243
Dynamically allocatingmemory 243
Disabling interrupts e 244
Strengthening compartment boundaries for FreeRTOS components . . 245

Contents

This is a public draft of the CHERIoT Programmers' Guide.

This is an early draft. It is public for early feedback and to help
o people get started with the CHERIOT Platform. It is guaranteed
to contain errors, both factual and typographic.

This book is copyright David Chisnall under the CC BY-NC 4.0 license.

Portions of the text and code listings are part of the CHERIoT RTOS project
and are licensed under the MIT license:

MIT License

Copyright (c) Microsoft Corporation and CHERIOT RTOS contributors.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE

Preface

The book that you are currently reading is not (yet) the second edition of the
CHERIOT Programmers Guide. It is a draft that contains most of the content
that will go into the first edition, but has not yet completed copyediting. As
such, expect it to contain both grammatical and typographic errors.

This book is intended as a companion to the CHERIoT Platform. The latest
draft is published on the CHERIoT web site.

The drafts are also available in PDF and ePub editions.

1. Acknowledgements

A few months ago, this book was less than half its current length. Completing
this was supported by the UKRI Discribe Hub+, funded through the Economic
and Social Research Council [ES/V003666/1].

The version that you are now reading has had some significant improve-
ments in accuracy and structure thanks to some great feedback from tech-
nical reviewers Phil Day, Richard Edgar, Adam Finney, Hugo McNally. It was
then copyedited by Amanda Robinson, who has done an excellent job in fixing
my typos, missing words, baroque sentence structures and all of the places
where I just forgot that sentences needed finishing. Any remaining errors,
omissions, or poor explanations are my responsibility.

The cats on the cover represent safe, secure, compartmentalisation (what
is safer or more secure than a cat in a box?). Each cat is in a separate, isolated,
compartment, in the model for which CHERIOT was designed.

The cat photos were contributed by some wonderful people from the Fe-
diverse. Starting at the top left, numbered left to right then top to bottom,
the photo credits are:

1,3,5,10:
Photographer: James (@chongliss@mastodon.ie), Cats: Jiji (1), Luna (3,
5), and Felix (10).

2,11:
Photographer: Cassian Lodge (@cassolotl@eldritch.cafe), Cat: Rosa.

4:
Photographer: Marin Bencevi¢ (@marinbenc@sigmoid.social)

6:
Photographer: Asta Halkjeer From (@ahfrom@fedi.ahfrom.synolo-
gy.me), Cat: Betty Rambo.

7:

https://cheriot.org/book
https://cheriot.org/book/cheriot-programmers-guide.pdf
https://cheriot.org/book/cheriot-programmers-guide.epub

Preface

Photographer: Victor Zverovich (@vitaut@mastodon.social), Cat: Luna
(no relation).

8:
Photographer: Michael McWilliams (@MichaelMcWilliams@mas.to),
Cat: Scotchy.

9:
Photographer: jarkman (@jarkman@chaos.social), Cat: Jack.

12:

Photographer: Isaac Freund (@ifreund@hachyderm.io), Cat: Marzi-
pan.
No generative Al was used in the creation of this image. No artist's work was
appropriated without their consent.

2. Reading and using examples

Code listings in this book specify the file that they come from in the book's
examples. You can find the examples in a stand-alone examples git repository
on GitHub.

You can clone this repository with the following command:

$ git clone --branch first-edition
--recursive
https://github.com/CHERIoT-Platform/book-examples
Cloning into 'book-examples'...
This will clone exactly the version used in the first edition. If you check out

the first-edition-update branch, then you will have a version that may not
exactly match the listings in the book, but which has been updated to work
with a newer version of the RTOS. Any differences in this branch will be listed
in the errata section of the online edition of the book.

The examples are provided as a stand-alone repository containing a snap-
shot of the RTOS and network stack each as a git submodule. It provides a devel-
opment container configuration (discussed in more detail in Section 3.2) that
provides all of the tools required to build the examples. This is discussed in
more detail in Chapter 3.

Example code in the book is pulled in from complete source files to ensure
that everything that you see as a listing is valid code that will, at the very
least, compile (and hopefully work). You should be able to build and run all
of the example code yourself.

Listings have line numbers on the left. These are the line numbers in the
file, so you can read the extracted listings in context.

10

https://github.com/CHERIoT-Platform/book-examples
https://github.com/CHERIoT-Platform/book-examples

2. Reading and using examples

When you read the files that contain these listings, you will see comments
like // something#begin and // something#end. These are the markers for
regions extracted and used in the book.

Syntax highlighting for this book is done by libclang (for C/C++) or TreeSit-
ter (for Lua and Rego).

11

Chapter 1.
CHERIOT Concepts

The CHERIoT platform is an embedded environment that provides a number
of low-level features via a mixture of hardware and software features.

1.1. Introducing memory safety

Memory in a modern computer is usually arranged as a flat set of storage lo-
cations. At the lowest level, you may do a load or store operation on addresses
in this space. Every location in memory is identified by a number and loca-
tions are treated as adjacent if their addresses are one apart. When you start a
process or a virtual machine, this abstraction is preserved and virtual memory
lets you pretend that you have a (very large) flat address space.

When you use a programming language that's higher-level than assembly,
memory looks a little bit different. Rather than being a flat set of one-byte
storage locations, the language exposes memory as objects. An object may be
something simple, such as an integer, or something large, such as an array of
complex structures. On most hardware, this is purely a software abstraction.
You may specify that you have an on-stack array of twelve integers, or a heap
allocation containing a buffer for a network packet, but the compiled program
will use numbers referring to locations in a flat memory space to represent
these locations.

The term memory safety applies to a variety of properties. It is somewhat
difficult to define because the problems arise when you don't have memory
safety. When you do have memory safety, things simply work as you expect
them to. It's therefore easier to think about memory unsafety.

Memory safety is usually split into two subcategories: temporal memory
safety and spatial memory safety. When you don't have spatial memory safety,
you can think that you are accessing one object, but you may be accessing
an adjacent one. For example, if you allocate a 12-byte on-stack buffer and
then try to write 16 bytes into it, a memory-safe system will raise some kind
of error. An unsafe system will instead let you write four bytes over some
adjacent location, possibly a return address. This is the simplest example of
how a buffer overflow can lead to arbitrary-code execution. If an attacker can
overwrite the return address on the stack then they can cause the function
to return somewhere else. They can chain several of these together to build
rich exploits.

13

1. CHERIoT Concepts

When you don't have temporal memory safety (sometimes called lifetime
safety) it is possible to access (read or write) an object after its lifetime ends. In
most language implementations, memory is reused and so accessing an object
after its lifetime really means accessing an unrelated object that happens to
be stored at the same place in memory.

Languages such as C and C++ are typically categorised as memory-unsafe
but this really means that they allow unsafe implementations. In both languages,
violations of memory safety are specified as undefined behavior. This means
that an implementation is allowed to do anything if they happen. The lan-
guage specifications allow this because, on most conventional hardware, dy-
namically checking that there are no memory-safety violations is too expen-
sive. It is completely valid for an implementation to decide to provide reliable,
deterministic, error reporting when these happen, and that's what CHERI C
and C++ do.

Higher-level languages usually impose some constraints that make it eas-
ier to efficiently guarantee memory safety. For example, Java references are
usually implemented as simple numerical addresses just like C pointers, but
the language doesn't allow you to do arithmetic on them. This means that you
can't ever do some arithmetic to turn a Java reference into a reference to an-
other object. Similarly, it means that the Java Virtual Machine can accurately
locate all references to objects. This makes it possible to implement automatic
garbage collection in Java, finding all of the objects that are not reachable and
deleting them rather than relying on the programmer to explicitly deallocate
them.

In most C and C++ implementations there are a lot of ways of violating
memory safety. For example, you can manufacture pointers from arbitrary
integers that happen to match addresses and access any object.

The lack of memory safety is responsible for around 70% of critical security
vulnerabilities. Memory-safety errors are usually the worst kinds of bug be-
cause it is impossible to reason about their impacts from the program source
code. By definition, you are accessing some memory that you don't think that
you're accessing. This memory may be an object that's completely unrelated
to the running code or even something that's part of the implementation of
the language and not normally directly accessible from within the language.

Attackers usually find it easy to use memory-safety vulnerabilities for ar-
bitrary-code execution attacks. At this point, the program that is running is
no longer the program that you thought you had started, but something dif-
ferent and under the attacker's control.

14

1.2. Understanding CHERI capabilities

1.2. Understanding CHERI capabilities

CHERI (pronounced 'cherry') defines an abstract set of features that can be
applied to a base architecture, such as AArché4, x86, or RISC-V, to provide
fine-grained memory safety that can be used as a building block for compart-
mentalisation. CHERIOT is a concrete instantiation of the CHERI ideas that is
tailed and extended for use in low-cost embedded devices. It makes sense to
understand CHERI before you try to understand CHERIOT.

CHERI stands for Capability Hardware Enhanced RISC Instructions. This is a
somewhat contrived acronym but it captures a few key ideas in CHERL It's a
extension to existing hardware and it doesn't require any complex microcode
or look-aside structures to implement (it can be applied to RISC instruction
sets). Most importantly, it's an extension that adds a capability model to the
base instruction set.

A capability, in the abstract sense, is an unforgeable token of authority
that must be presented to perform an operation. Capabilities exist in the
physical world in various forms. For example, a key to a padlock is a capability
to unlock that padlock. When the key is presented, the padlock can be un-
locked. Without the key the padlock cannot be unlocked without exploiting
some security vulnerability, such as using lock picks or a bolt cutter. It does-
n't matter to the padlock who presents the key, only that the correct key has
been presented. Some complex building locks have different keys that autho-
rise unlocking different sets of doors. For example, a team leader may have a
key that unlocks the offices of everyone on their team and the building man-
ager may hold a key that unlocks everything.

Capabilities can be delegated. The building manager may loan their key
to someone else to unlock a door. The key and the door don't care who is
holding them. You can create a copy of a capability that you hold and give it
to someone else, just as you could go to a key cutter and have a copy made of
a key that you own.

Alot of capability systems (including CHERI) allow you to reduce the rights
that a capability grants. This breaks the key metaphor somewhat. If you have
a master key for a building, you can't easily use it to create a key that allows
just locking but not unlocking doors, or create one that opens all of the doors
on the ground floor but no others, but capability systems usually do permit
this kind of operation.

Some kinds of capabilities can also be revoked. This is traditionally the
hardest operation to perform on capabilities. In our key analogy, this is equiv-
alent to someone performing an audit of all of the keys and removing some

15

1. CHERIoT Concepts

of them from people that shouldn't have them anymore. This is often solved
in capability systems by adding a layer of indirection. Rather than allowing
capabilities to be stored anywhere, the system places them in one or more
centralised tables. When you use a capability, you do so by referring to a lo-
cation in a table. This makes it easy to revoke capabilities by removing them
from the tables. UNIX file descriptors work like this: you refer to them by
number and the kernel can invalidate them by simply removing the entry at
that location in your process's file-descriptor table.

Some hardware capability systems have used a similar approach to capa-
bility storage and revocation but it has a significant disadvantage: every time
that you use a capability, the hardware must find it in the relevant table.
This can turn a single memory access into several. Implementations can miti-
gate this somewhat by caching, but these caches quickly introduce significant
power overheads. CHERI avoids this entirely, which makes the common op-
erations easier, but makes revocation somewhat more challenging. CHERIoT
includes some additional hardware extensions for revocation, which we'll dis-
cuss in Chapter 7.

On a CHERI system, capabilities are used to authorise access to memory.
Any instruction that takes an address in a conventional architecture takes a
CHERI capability as the operand instead. The CHERI capability both describes a
location in memory and grants access to it. For example, the following RISC-
V snippet loads four bytes from offset eight relative to the address in register
al and places the result in so.

lw s0, 8(al)

On a CHERIoT system, which is a CHERI RISC-V variant, this instruction
looks slightly different:

clw s0, 8(cal)

Now, it is loading a word into s@ from offset eight relative to the capability
(not address) in register cal (al extended to hold a capability.) This instruc-
tion will check that the capability in cal is a valid capability, check that it
has load permission, and check that the range covered by the four-byte load
starting at offset eight from the current address is all in bounds. If, and only
if, all of these checks pass, will it do the same load as the original version. If
any of these fail, the instruction will trap. The next section explains what it
means for a capability to be valid and what permissions a capability can hold.

Most of the time, hopefully, you will not be writing assembly and so this
is simply a detail for the compiler to worry about. You can think of a CHERI
memory capability as a pointer that the hardware understands. In C, if you

16

1.2. Understanding CHERI capabilities

hold a pointer to an object then you are allowed to access the object that it
points to. If you do some pointer arithmetic that goes out of bounds of the
object, C says that this is undefined behaviour. CHERI says more concretely
that it will trap: you are not authorised to access that memory with this capa-
bility. If you hold two pointers to objects that are adjacent in memory, then
you may be authorised to access the memory, but not with the pointer that
you are using.

This highlights the two key security principles that capability systems are
able to enforce:

* The principle of least privilege, which states that a piece of running code
should have the rights to do what it needs to do and no more.

* The principle of intentional use, which states that any privileged opera-
tion must be performed by intentionally exercising the specific right
that is needed.

Capability systems make it easy to implement least privilege by providing
running code only with the minimal set of capabilities (with the limited set of
rights) that they need. They make it easy to implement intentionality by re-
quiring the specific capability to be presented along with each operation. The
latter avoids a large category of confused deputy attacks, where a component
holding one privilege is tricked into exercising it on behalf of a differently
trusted component.

In a CHERIOT system, every pointer in a higher-level language
such as C, and every implicit pointer (such as the stack pointer,
global pointer, and so on) used to build the language's abstrac-

tions, is a CHERI capability. If you have used other CHERI systems
n then you may have seen a hybrid mode, where only some point-

ers are capabilities and others are integers relative to an implicit
capability. CHERIoT does not have this hybrid mode. The hybrid
mode is intended for running legacy binaries but makes it harder
to provide fine-grained sandboxing. CHERIOT assumes all code
will be recompiled for the new target.

The phrase 'differently trusted' in the previous paragraph is not an at-
tempt to extend political correctness to software components, Capability sys-
tems do not imply hierarchical trust models. Two components may hold dis-
joint or overlapping sets of capabilities that allow each to perform some set

17

1. CHERIoT Concepts

of actions that the other cannot. In a CHERI system, this can include one com-
ponent having read access to an object and another write access, or two com-
ponents having access to different fields of the same structure.

1.3. Restricting memory access with compressed bounds

The original CHERI prototypes used a 256-bit capability that stored a full 64-
bit base and length. This was useful for research and prototyping but replac-
ing 64-bit pointers with 256-bit ones was an unacceptable overhead when
CHERI started to move from research to production. Newer CHERI implemen-
tations reduce this overhead by taking advantage of redundancy. The base,
top, and address of a capability all have some common bits in the top of their
address.

Consider a pointer to memory location 0x08000234, in an allocation that
starts at 0x08000230 and is 64 bytes long. The base, top, and address all start
0x080002, so you can store that part separately and then you just need to
store the low bits for each of the three values. Modern CHERI encodings work
somewhat like this. They store the address of the pointer as a full 32- or 64-bit
value and then use a floating-point bounds encoding to store the distance from
that value to the top and the bottom.

The floating-point representations use a shared exponent but different
mantissas for the top and bottom. In the previous example, this means that
you'd store the address as the full 32-bit value: 0x08000234. The top is 0x3c
bytes above and the base 0x4 bytes below this address. Even on the most
space-constrained CHERI encodings, these will fit entirely in the mantissa and
so the exponent will be zero.

CHERIOT uses a nine-bit mantissa. If the distance to the top and base can't
be expressed in nine bits then you may not be able to store a precise value.
For example, imagine that you want a 1024-byte allocation. You can express
this, but only if the base and top are at least four-byte aligned.

The larger a memory region you want to represent, the more strongly
aligned the base and top must be. The compiler or memory allocator will han-
dle this for you if capabilities correspond to complete allocations but this can
be a problem when you are creating sub-object capabilities. For example, if you
want to pass a capability to a region within a reusable buffer as a function
argument, you may not be able to express the bounds precisely. When this
happens, you must choose between splitting the operation into two calls that
each use part of the buffer, or trusting the callee with slightly larger bounds.

18

1.4. Decomposing permissions in CHERIoT

1.4. Decomposing permissions in CHERIoT

Any CHERI system provides a set of permissions on capabilities. Permissions,
along with bounds, are capability metadata, as shown in Figure 1. CHERI sys-
tems typically use double the size of the platform's native address for capa-
bilities, so all of the metadata needs to fit in the size of one address. As well as
this metadata, there is a non-addressable tag bit, sometimes called a valid bit
that differentiates between capabilities and other data. If a memory location
or a register has its valid bit set, then it holds a capability and the hardware
promises that this was derived from a valid sequence of operations from some
more powerful capability.

A lot of capability systems, particularly software capability systems, store
capabilities in tables or special memory locations. CHERI could not take this
approach because it was designed to allow C implementations to use capabil-
ities to represent pointers and C allows interleaving pointers and data. Any
memory location in a C program that is large enough and sufficiently aligned
to hold a pointer may hold a pointer or some other data. CHERI systems sup-
port this arbitrary interleaving with a tag bit. On a CHERIOT system, addresses
are 32 bits but capabilities are 65 bits. Normal data operations see only 64 of
these bits but capability operations see all 65. If you store data (for example,
a 32-bit word or an 8-bit byte) somewhere in a 65-bit chunk, the data will be
stored and the tag bit will be cleared. If you load a capability-sized chunk of
memory into a capability register, the tag bit will be loaded along with the
other 64 bits and will determine whether you've loaded a capability or just 64
bits of data. When you store this back to memory, the tag bit is propagated
out again.

Tag bits and their accompanying data are moved between registers and
memory atomically. This guarantees that you can't write part of a capability
and some data to the same location and end up with a valid capability.

capability on a 64-bit architecture. The versions aimed at pro-
duction have all used no more than double the address size to
store a capability.

n The very earliest CHERI research prototypes used a 256-bit

Most prior CHERI systems have 64-bit addresses (and therefore 128-bit ca-
pabilities) and so have a lot of space for permissions as an orthogonal bitfield.
The CHERIOT platform has 32-bit addresses (and therefore 64-bit capabilities)

19

1. CHERIoT Concepts

Memory

What can | do with this pointer?

. . Is this an opaque (sealed) pointer
Is this a pointer? (and what kind)?

What range of memory can | use
this pointer to access?

-

Tag Permissions | Type | Bounds I

Address

What address does this pointer
point to?

FIGURE 1. A CHERIOT capability grants access to a range of memory.

and so has to compress the permissions. This is done, in part, by separat-
ing the permissions into primary and dependent permissions. The primary
permissions (listed in Table 1) have meaning by themselves. If you use the
CHERIOT RTOS logging support (described in Chapter 8) to print capabilities,
the permissions will be listed using the letters in the first column.

Read and write permission allow the capability to be used as an operand
to load and store instructions, respectively. Execute allows the capability to
be used as a jump target, where it will end up installed as the program counter
capability and used for instruction fetch. We'll cover the sealing and unsealing
permissions later.

Global is a bit unusual. The other permissions affect what you can do with
the memory that the capability refers to, whereas global affects what you can
do with this capability. This should make more sense when we look at the
permissions that interact with the global permission.

20

1.4. Decomposing permissions in CHERIoT

Debug Permission Meanin

output letter name &

G Global May be stored anywhere in memory.

R Load (Read) May be used to read.

W Store (Write) May be used to write.

X Execute May be used to as a jump target (executed).
May be used to seal other capabilities (see

S Seal .
Section 1.6).

U Unseal May be used to unseal sealed capabilities.

0 User 0 Reserved for software use.

TABLE 1. CHERIOT primary permissions

The dependent permissions (listed in Table 2) provide more fine-grained
control. Dependent permissions are ones that depend on the existence of
some other permission. Without that permission (or, in the case of load / store
capability, at least one of the possible primary permissions), they would be
meaningless.

For many of these, it's more useful to think about what can't be done if
you lack the permission than to think about what can be done if you have it.
By default, the load and store permissions authorise instructions to load and
store non-capability data. With the load / store capability permission, they
also allow loading and / or storing capabilities, Removing this permission is
useful for pure-data buffers. You can't accidentally store a valid pointer into
them, and if they already contain a valid pointer then no one can load it via
this capability.

You can use a capability that has the load-global permission to load capa-
bilities that have the global permission. Any capability loaded via a capabil-
ity without this permission will have its global (and load-global) permission
stripped. It can then be stored only via a capability that has the store-local
permission.

21

1. CHERIoT Concepts

Debug

output Permission Depends Meaning
lotter name on
Load / Store Ca- May be used to load or store. ca-
c s R/W pabilities as well as non-capability
pability
data.
g Load Global R Mfay be used to load' ctapablhtles
with the global permission.
m Load Mutable R ng be'used to‘lo.ad capabilities
with write permission.
May be used to store capabilities
1 Store Local w that do not have global permis-
sion.
a Access System Code run via this capability may
Registers access reserved special registers.

TABLE 2. CHERIoT dependent permissions

These permissions are complex but they exist to support language-level
features that are much simpler. These language-level properties work be-
cause CHERIOT RTOS provides the store-local permission exclusively to stacks
and stack capabilities are not global. This combination initially guarantees
thread isolation in CHERIOT. Pointers to stack allocations are derived from the
stack capability, and so lack global, and can therefore be stored only on the
stack (the only thing with store-local permission).

Removing the global permission from any other capability gives it the
same property: you can store it only on the stack. If you pass it to another
function then that function cannot store it in a global or on the heap, which
gives you a shallow no-capture guarantee: The callee cannot hold onto a copy
of the pointer after the end of the call. This is shallow because the callee can
capture pointers to objects that are reachable via pointers stored in the orig-
inal object. Removing the load-global permission makes this a deep no-capture
guarantee, Any pointer loaded, at any level of indirection, from the original
pointer will have the property that it can be stored only on the stack.

22

1.5. Building memory safety

Similarly, store and load-mutable permissions are intended to give simi-
lar language-level guarantees for mutability. If you have a capability without
store permission then you cannot use it to modify the object that the capa-
bility points to. If that object contains pointers then you may be able to load
one of those and modify an object reachable from the original capability. This
gives a shallow immutability. Removing the load-mutable permission turns this
into a deep immutability guarantee, stripping both store and load-mutable per-
missions from any capability that you load. This lets you share a read-only
view of a complex data structure.

The access-system-registers permission controls access to a small num-
ber of privileged registers and is never handed out to code other than a tiny
trusted component in the core of the RTOS.

The CHERIoT encoding stores 12 permissions in five bits by
excluding meaningless combinations and some that are not nor-
mally useful. This comes with a few limitations, most notably
that execute permission implies load. It is not possible to re-
move load permission from an executable capability. Some mod-
ern platforms support execute-only memory as a security feature.

CHERIOT cannot express this but this does not cause practical
& problems for security. The sentry mechanism (described in Sec-

tion 1.6) lets you have memory that is readable only while exe-
cuting from it, which is a more useful security property. Execute-
only memory normally aims to prevent information leaks that
lead to code-reuse attacks. These attacks, in turn, are triggered
via pointer injection or other memory-safety violations, which
CHERIOT deterministically mitigates.

1.5. Building memory safety

Memory safety is a property of a source-level abstract machine. Memory
safety for C, Java, or Rust mean different things. At the hardware level,
CHERIOT is designed to enable implementations of languages to enforce
memory safety, in the presence of untrusted code such as inline assembly
or code written in a different language. Most importantly, it provides the
tools that allow code in a compartment (see Section 1.8) to protect itself from
arbitrary code in a different compartment. This means protecting objects
such that code from a different security context cannot:

23

1. CHERIoT Concepts

* Access objects unless passed pointers to them.
* Access outside the bounds of an object given a valid pointer to that
object.
* Access an object (or the memory that was formerly used for the object)
after the object has been freed.
+ Hold a pointer to an object with automatic storage duration (an 'on-
stack' object) after the end of the call in which it was created.
+ Hold a temporarily delegated pointer beyond a single call.
+ Modify an object passed via immutable reference.
+ Modify any object reachable from an object that is passed as a deeply
immutable reference.
+ Tamper with an object passed via opaque reference.
The hardware provides tools for enforcing all of these properties but it's up to
the compiler and the RTOS to cooperate to use them correctly. For example,
in the CHERIOT ABI, each compartment has a single capability in a register
that spans all of its globals and a single capability that grants access to its en-
tire stack. The compiler will derive capabilities from these that are bounded
to individual globals or on-stack objects. Inline assembly that references the
global-pointer or stack-pointer registers directly can bypass spatial memory
safety for these objects, but only from within the same compartment. None
of the properties relating to heap objects make sense in the absence of a heap.
CHERIoT RTOS provides a shared heap (see Chapter 7) which enforces spatial
and temporal safety for heap objects.

1.6. Sealing pointers for tamper proofing

We have discussed all of the primary permissions from Table 1 with the excep-
tion of those related to sealing. Sealing a capability transforms it from some-
thing that conveys rights and can be used to exercise those rights into an
opaque token. It can be transformed back with the converse unseal operation.

Capabilities have one field that we have not yet discussed: an object type.
This is normally zero, representing an unsealed capability. Any non-zero
value indicates a sealed capability.

When you seal a capability, you use a capability with permit-seal permis-
sion. The sealing operation sets the object type of the newly sealed capability
to the address of the capability that authorised the seal operation. With a
non-zero object type, the sealed capability cannot be modified. Any attempt
to change the address, bounds, or permission will clear the tag and give an
invalid capability. It can be copied but is always treated as an opaque value.

24

1.6. Sealing pointers for tamper proofing

Unsealing is the only operation that can modify a sealed capability. This re-
quires a valid capability with permit-unseal permission and the same address
as the capability that was used in the original seal operation. The unseal op-
eration results in a capability that is identical to the one that was sealed.

If you attempt to unseal a capability that is not sealed with the value of
the permit-unseal capability then you will get back an untagged value. Sealed
capabilities can therefore be used as trusted handles that can be shared with
untrusted code. If the untrusted code tries to modify the value in any way,
you can detect the tampering, either by inspecting the tag bit after unsealing
or by trying to use it and getting a trap.

Sealing is the building block for a lot of the higher-level security proper-
ties in the CHERIOT system. Being able to hand out opaque tokens that can be
validated when handed back is a very powerful primitive. Sealed capabilities
are a core part of the cross-compartment call mechanism as well as the build-
ing block for software-defined capabilities throughout the RTOS.

The CHERIoT encoding has space for only three bits of object type (in con-
trast with 'big CHERI' systems such as Morello that typically have 18 bits).
This is sufficient for a small number of core parts of the ABI but not enough
for general-purpose use. To mitigate this limitation, the CHERIoT memory
allocator provides a set of APIs (see Section 7.7) that virtualise the sealing
mechanism. The same mechanism is also used to build software-defined ca-
pabilities.

The object type in a CHERIOT capability is interpreted differently depend-
ing on whether the sealed capability is executable or not. For executable ca-
pabilities, most of the object types are reserved for sealed entry (sentry) ca-
pabilities. A sentry capability can be unsealed automatically by jumping to it.
Return addresses are automatically sealed by the jump-and-link instructions,
so you cannot modify a return address, you can only jump to it.

Beyond that, return addresses are sealed as a different kind of sentry. If you
substitute a return address on the stack with a function pointer (or vice versa)
you will get a trap in the jump. This makes control-flow hijacking attacks very
hard to mount on a CHERIOT system.

Sentries are also used as a building block for cross-compartment calls. A
sentry can point to a region of memory that contains both code and data. The
data is accessible via PC-relative addressing only after jumping into the code.

25

1. CHERIoT Concepts

1.7. Controlling interrupt status with sentries

In conventional RISC-V (and most other architectures) the interrupt status is
controlled via a special register. This register can be modified only in a privi-
leged mode. The CHERIOT ISA allows this register to be modified only by code
running with the Access System Registers permission in the program counter
capability.

Embedded software often wants to disable interrupts for short periods but
granting the permission to toggle interrupts makes auditing availability guar-
antees between mutually distrusting components almost impossible. Instead,
CHERIOT provides three kinds of sentries that control the interrupt status.
These either enable or disable interrupts, or leave the interrupt enabled state
untouched. The branch-and-link instruction captures the current exception
state in the return sentry.

This allows you to provide function pointers to functions that will run with
interrupts disabled and guarantee that, on return, the interrupt status is reset
as it should be. In effect, this brings structured programming to interrupt
status.

In the RTOS, for example, the atomics library provides a set of functions
that (on single-core systems without hardware atomics) perform simple read-
modify-write operations with interrupts disabled. A compartment can use
these without having the ability to arbitrarily toggle interrupts, giving a limit
on the amount of time that it can run with interrupts disabled.

1.8. Isolating components with threads and compartments

Most mainstream operating systems have a process model that evolved from
mainframe systems. This is built around isolation, with sharing as an af-
terthought. The primary goal for process isolation was to allow consolidation,
replacing multiple minicomputers with a single mainframe. These abstrac-
tions were designed with the assumption that they ran independent work-
loads that wanted to share computational resources. Gradually, communica-
tion mechanisms have been added on top.

CHERIOT starts from a fundamental assumption that isolation is easy, (safe)
sharing is hard. Particularly in the embedded space, it's easy to provide a sepa-
rate core and SRAM if you want strong isolation without sharing. Most useful
workloads involve communication between distrusting entities. For example,
if you want to connect an 10T device to a back-end service, your ethernet

26

1.9. Sharing code with libraries

driver needs to communicate with the TCP/IP stack, which needs to commu-
nicate with the TLS stack, which needs to communicate with a higher-level
protocol stack such as MQTT, which needs to communicate with your device-
specific logic.

CHERIOT provides two composable abstractions for isolation:

+ Compartments are units of spatial isolation

+ Threads are units of temporal isolation
A compartment owns some code and some globals. It exports a set of func-
tions as entry points and may import some entry points from other compart-
ments. A thread owns a register state and a stack and is a schedulable entity.

At any given point, the core is executing one thread in one compartment.
Threads move between compartments via function call and return. When
code in one compartment calls another, it loses access to everything that was
not explicitly shared. Specifically:

« All registers except argument registers are zeroed.
+ The stack capability is truncated to exclude the portion used by the
caller.
+ The portion of the stack that is delegated from the caller to the callee
is zeroed.
On return, the stack becomes accessible again but a similar set of state clear-
ing guarantees confidentiality from the callee to the caller.

Arguments that are passed from one compartment to another may include
capabilities. At the start of execution, each compartment has a guarantee
that nothing else can see or modify its globals. If one compartment passes a
pointer to one of its globals to another, you now have shared memory. This
can be useful with restricted permissions for sharing read-only epoch coun-
ters and similar.

1.9. Sharing code with libraries

Invoking reusable components does not always involve a change of security
context. The CHERIOT software model provides shared libraries for sharing
code without a security boundary.

Unlike compartments, shared libraries do not have mutable globals. They
are reusable code and read-only data, nothing else. Because of this they are
invoked via a much lighter-weight mechanism than a full cross-compartment
call. This mechanism doesn't clear the stack or registers.

Using a CHERIoT shared library is conceptually equivalent to copying the
code that implements it into every compartment that uses it. Unlike simple

27

1. CHERIoT Concepts

copying, shared libraries are independently auditable (see Chapter 10) and
require only a single copy of the code in memory. All entry points exported
from a shared library are invoked via sentries. This means that they can en-
able or disable interrupts for the duration of the call.

Some shared libraries expose very simple functions, others are a lot more
complex. For example, the atomics library provides some functions that are
only a handful of instructions long. In contrast, the shared library that pack-
ages Microvium provides a complete JavaScript interpreter.

1.10. Auditing firmware images

When a CHERIoT firmware image starts, the loader initialises all of the ca-
pabilities that each compartment holds at boot. It does this using metadata
provided by the linker. This means that everything that leads to capabilities
being provided is visible to the linker. The CHERIOT linker, in addition to pro-
viding the firmware image, provides a report about this structure. The report
includes:

+ The hashes of the sections that form each compartment.

« The list of exports from each compartment and each library.

« The list of functions imported for each compartment and each library.

+ Whether each entry point runs with interrupts enabled, disabled, or

inherited.
+ Thelist of memory-mapped 1/0 (MMIO) regions accessible by any com-
partment.

+ How much memory each compartment is permitted to allocate.

« The initial entry point, stack size, and priority for each thread.
This allows automated build time auditing of various high-level security poli-
cies. For example, you can check that a single compartment, containing a
known binary (for example, one that has been approved by regulators), is the
only thing that is able to access a specified device. You can require that noth-
ing runs with interrupts disabled except a specific set of permitted library
functions. Or you can say that users can provide their own logic for control-
ling their 10T device, but require that only compartments that you trust can
have the permission to connect to your cloud servers.

28

https://microvium.com

Chapter 2.
The RTOS Core

The core of the RTOS is a set of privilege-separated components. Each core
component runs with some privileges that mean that it is (at least partially)
in the trusted computing base (TCB) for other things.

2.1. Starting the system with the loader

The loader runs on system startup. A firmware image contains everything
that needs to end up in memory when the system starts, as well as an im-
age header that contains metadata describing its layout. The loader reads the
header and populates each compartment with the set of capabilities that it
needs. The loader exists so that the system can be started from a firmware
image that does not embed capabilities. This is a useful property even if a
particular target has persistent storage (non-volatile RAM) that can hold ca-
pabilities because it ensures that there is an on-device pointer provenance flow
for the firmware.

Pointer provenance ensures that pointers in the system were derived from
other pointers via a chain that makes sense. Pointers cannot be made up from
thin air. When a CHERI system boots, it starts with one or more capabilities
in registers that convey the full set of permissions. If you call a function like
malloc there is a chain of derivations that leads back to these initial capabil-
ities. For example, the loader will create a capability to the heap region that
has a subset of permissions (for example, not execute permission) that covers
the region that will be used for the heap, and then the memory allocator will
reduce the bounds to hand out a capability for a single object. CHERI doesn't
let you reconstruct that chain but it does guarantee that it, or some equiva-
lent chain, must have existed.

If a device has non-volatile storage that holds tags, you will typically run
the loader once at install time or on first boot of a new firmware image. This
ensures that the initial state for each component's memory contains only ca-
pabilities that the loader explicitly grants to it. This, in turn, enables multi-
stage boot where some functionality, such as attestation, secure key storage,
and so on, are provided by a bootloader. These abstractions can all be built
from capabilities and so, unlike systems based on protection rings such as
TrustZone, an arbitrary number can be nested.

29

2. The RTOS Core

If a compartment contains a global that is a pointer, initialised to point to
another global, the loader will initialise the pointer by deriving a capability
from one out of either the compartment's code or data capabilities. Again,
this enforces provenance properties, this time within a firmware image. A
malicious compartment may provide a relocation that points to a global out-
side its own memory, but the loader will attempt to derive the capability only
from the compartment's initial pcc (code) and cgp (globals) regions and so
will fail. Globals may point to other globals owned by the compartment; the
loader will fail to derive a valid capability if they point elsewhere.

The loader must also provide all capabilities to compartments that allow
them to communicate outside of their own private space. This includes access
to memory-mapped 1/0 (MMIO) regions, capabilities for pre-shared objects, for
software-defined capabilities, and any capabilities for calling entry points ex-
posed by other compartments or libraries. The loader also creates the stacks
and trusted stacks for each thread and creates their initial entry points.

The loader is the most privileged component in the system. When a
CHERIoT CPU boots, it will have a small set of root capabilities in registers.
These, between them, convey the full set of rights that can be granted by a
capability. Every capability in the running system is derived (often via many
steps) from one of these. As such, the loader is able to do anything.

provided to the loader may be restricted, rather than the om-
nipotent set from CPU boot. For example, an early loader may
implement A/B booting by providing the RTOS loader with ca-
pabilities to only half of persistent memory.

n In a system with a multi-stage boot, the initial capabilities

The risk from the loader is mitigated by the fact that it does not run on
untrusted data. The loader operates only on the instructions generated by
the linker and so it is possible to audit precisely what it will do (see Chapter
10). It is also possible to validate this by running the loader in a simulator and
capturing the precise memory state after it has run.

The loader enforces some of the guarantees in the initial state. It is struc-
tured to be able to enforce some of these by construction. For example, only
stacks and trusted stacks (accessible only by the switcher, see Section 2.2)
have store-local permission and these do not have global permission. The
scheduler derives these from a capability that has store-local but not global
permissions and derives all other capabilities from one that has the store-lo-
cal permission removed.

30

2.2. Changing trust domain with the switcher

Before starting the system, the loader erases almost all of its code (leaving
the stub that handles this erasure), its stack, and clears its registers. The last
bit of the loader's code becomes the idle thread (a wait-for-interrupt loop).
The loader's stack is used for the scheduler stack. The memory that held the
loader's code is used for heap memory.

2.2. Changing trust domain with the switcher

The switcher is the most privileged component that runs after the system
finishes booting. It is responsible for transitions between threads (context
switches) and between compartments (cross-compartment calls and re-
turns). The switcher is a very small amount of code—under 500 instructions
—that is expected to be amenable to formal verification.

Work is underway to formally verify the security properties
of the switcher, but is still in early stages at the time of writing.

The switcher is the only component in a running CHERIoT system that has
access-system-registers permission. It uses this primarily to access a single
reserved register that holds the capability that defines the trusted stack for the
current thread. A trusted stack is a region of memory containing the register
save area for context switches and a small frame for every cross-compartment
call that allows a safe return even if the callee has corrupted all state that it
has access to.

Trusted stacks are set up by the loader. The loader passes the scheduler
(see Section 2.3) a sealed capability to each of these on initialisation. The
switcher holds the only permit-unseal capability for the type used to seal
trusted stacks.

The context switch path in the switcher spills all registers to the current
trusted stack's save area and then invokes the scheduler, which returns a
sealed capability to the next thread to run. It then restores the register file
from this thread and resumes. If the scheduler returns an invalid capability
(one not sealed with the correct type) then the switcher will raise a fault.
When an interrupt is delivered, a copy of the program counter capability for
the interrupted state is saved in the exception program counter capability regis-
ter. If the exception program counter capability on exception entry is within
the switcher's capability, the switcher will terminate. The switcher is written
to avoid trapping and so any trap is assumed to be an active attack trying to
exploit a bug in the switcher.

31

2. The RTOS Core

On the cross-compartment call path, the switcher is responsible for un-
sealing the capability that refers to the export table of the callee, clearing
unused argument registers, pushing the information about the return to the
trusted stack, subsetting the bounds of the stack, and zeroing the part of the
stack passed to the callee. On return, it zeroes the stack again, zeroes unused
return registers, and restores the callee's state.

This means that the switcher is the only component that has access to
either two threads', or two compartments', state at the same time. As such, it
is in the TCB for both compartment and thread isolation. This risk is mitigated
in several ways:

+ The switcher is small. It contains a similar number of instructions com-
pared to the amount of unverified code in selL4.

+ The switcher is defensive. Most errors simply forcibly unwind to the
previous trusted stack frame, so a compartment that attempts to at-
tack the switcher exits to its caller.

« Like everything else in the system, it must follow the capability rules.
Unlike an operating system running in a privileged mode on main-
stream hardware, it does not get to opt out of memory protection, it
is not able to access beyond the bounds of capabilities passed to it or
access any memory to which it does not have an explicit capability.

« It is largely stateless. All state that it modifies is held in the trusted
stack for the current thread.

The switcher appears to the rest of the system as a library. It can expose func-
tions for inspecting or, in a small number of cases, modifying state. These are
defined in switcher.h. For example, prior to performing a cross-compart-
ment call, you may want to check that there is sufficient space on the trusted
stack for the number of calls that it will need to make. The trusted_stack-
_has_space function exposed by the switcher lets you query if the trusted
stack has enough space for a specified number of cross-compartment calls.
The amount of (normal) stack space is directly visible in a compartment and
so normal stack checks do not require the switcher to be involved.

The switcher also implements the thread_id_get function, which pro-
vides a fast way for compartments to determine which thread they are cur-
rently running on. This function is used in the implementation of priority-
inheriting locks (see Section 6.7). Implementing efficient priority-inheriting
locks requires a fast mechanism for getting the current thread ID so that it
can be stored in the lock.

32

2.3. Time slicing with the scheduler

Documentation for the trusted_stack_has_space function

_Bool trusted_stack_has_space(int requiredFrames)

Returns true if the trusted stack contains at least requiredFrames
frames past the current one, false otherwise.

Note: This is faster than calling either trusted_stack_index or
trusted_stack_size and so should be preferred in guards.

Documentation for the thread_id_get function

uintl6_t thread_id_get()

Return the thread ID of the current running thread. This is mostly
useful where one compartment can run under different threads and
it matters which thread entered this compartment.

User threads (that is, those defined in the xmake firmware configura-
tion) are 1-indexed, with 0 indicating primordial idle and scheduling
contexts. User code never runs in these contexts and so anything us-
ing this result to index into a per-thread array may wish to subtract
one and avoid allocating an array element for the idle thread.

This is implemented in the switcher.

2.3. Time slicing with the scheduler

When the switcher receives an interrupt (including an explicit yield), it dele-
gates the decision about what to run next to the scheduler. The scheduler has
direct access to the interrupt controller but, in most respects, is just another
compartment.

The switcher also holds a capability to a small stack for use by the sched-
uler. This is not quite a full thread. It cannot make cross-compartment calls
and is not independently schedulable. When the switcher handles an inter-
rupt, it invokes the scheduler's entry point on this stack.

33

2. The RTOS Core

The scheduler also exposes other entry points that can be invoked by
cross-compartment calls. These fulfil a role similar to system calls on other
operating systems, for example waiting for external events or performing in-
ter-thread communication. The scheduler implements blocking operations
by moving the current thread from a run queue to a sleep queue and then
issuing a software interrupt instruction to branch to the switcher. When the
switcher then invokes the scheduler to make a scheduling decision, the sched-
uler will discover that the current thread is no longer runnable and pick an-
other. Once the thread becomes runnable again, the switcher resumes the
thread from the point where it yielded, at which point it can return from the
scheduler.

The scheduler is, by definition, in the TCB for availability. It is the compo-
nent that decides which threads run and which do not. A bug in the scheduler
(with or without an active attacker) can result in a thread failing to run.

It is not, however, in the TCB for confidentiality or integrity. The sched-
uler has no mechanism to inspect the state of an interrupted thread. When
invoked explicitly, it is called with a normal cross-compartment call and so
has no access to anything other than the arguments.

As with the switcher, the scheduler mitigates these risks by being small
(though larger than the switcher). It currently compiles to under 4 KiB of
object code. This small size is accomplished by providing only a small set of
features that can be used as building blocks for other tasks.

For example, some embedded operating systems provide features such as
message queues in their kernel. In CHERIOT RTOS, these are provided by a
separate library, which relies on the futex (see Section 6.5) facility exposed by
the scheduler to allow a producer to block when the queue is full and allow
consumers to block when the queue is empty.

Futexes are the only mechanism that the scheduler provides for blocking.
Interrupts are mapped to futexes and so threads wait for hardware or soft-
ware events in exactly the same way. This narrow interface and clear separa-
tion of concerns helps improve overall system security.

2.4. Sharing memory from the allocator

The final core component is the memory allocator, which provides the heap
used for all dynamic memory allocations. This is discussed in detail in Chap-
ter 7. Sharing memory between compartments in CHERIoT requires nothing
more than passing pointers (until you start to add availability requirements
in the presence of mutual distrust). This means that you can allocate objects

34

2.5, Building a C/C++ environment

(or complex object graphs) from a few bytes up to the entire memory of the
system and share them with other compartments.

The allocator has access to the shadow bitmap and hardware revocation
engine that enforce temporal safety for the heap, and is responsible for set-
ting bounds on allocated memory. It is therefore trusted for confidentiality
and integrity of memory allocated from the heap. If it incorrectly sets bounds,
a compartment may gain access to memory belonging to another allocation.
If it incorrectly configures revocation state or reuses memory too early then
a use-after-free bug may become exploitable.

The allocator is not able to bypass capability permissions, it simply holds
a capability that spans the whole of heap memory. As such, it is in the TCB
only with respect to heap all